(35.172.233.215) 您好!臺灣時間:2020/08/12 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:許春霖
研究生(外文):Spring C. Hsu
論文名稱:複合大眾運輸場站旅客等候時間之研究
論文名稱(外文):Modeling Passenger Waiting Time for Intermodal Transit Stations
指導教授:張學孔張學孔引用關係
指導教授(外文):S.K. Jason Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:100
中文關鍵詞:複合運輸場站等候時間可靠度旅客行為班距
外文關鍵詞:intermodal stationwaiting timereliabilitypassenger behaviorsheadway
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1052
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:175
  • 收藏至我的研究室書目清單書目收藏:4
本研究應用機率理論建立數學模式,分析使用市區接駁公車至複合大眾運輸場站搭乘長途大眾運輸旅客之等候時間。長途大眾運輸系統(例如台鐵、高速鐵路,以及長途客運等)具有班距較長與發車時間固定之特性,搭乘之旅客多預先掌握班表時間,因而其候車行為與班次密集之市區公車系統有顯著的差異。由於城際間之長途大眾運輸系統多依靠市區公車擔任接駁工具以增加其可及性,因此接駁系統之服務可靠度將影響長途大眾運輸旅客之候車行為及等候時間。本研究改進傳統上「等候時間為班距的二分之一」或「等候時間與班距成一特定比例」之簡化假設,同時將長途客運班距、接駁系統班距、接駁系統可靠度、旅客行為以及長途客運系統容量限制納入考量,建立長途客運旅客之等候時間模式,能夠更精確地剖析長途客運旅客候車時間。本研究發現,長途客運系統在接駁系統服務可靠度不佳時,旅客平均等候時間將大於二分之一班距;而在較佳的接駁系統下,其平均等候時間則低於二分之一班距。研究亦指出,掌握班表旅客之等候時間主要受長途客運班距、接駁公車班距、接駁公車服務可靠度、接駁公車資訊系統可靠度以及長途客運系統容量限制之影響,而隨機搭乘旅客之等候時間則受長途客運系統班距與平均預定到站時間影響較大。此一結果顯示接駁公車可靠度對於掌握班表旅客等候時間有顯著的影響,當接駁公車可靠度不佳時,掌握班表資訊的旅客不但得不到好處,反因接駁系統可靠度不佳而受害,此時旅客平均等候時間將因掌握班表旅客比例之增加而快速上升。因此為了改善複合大眾運輸場站之服務水準,不僅要從長途客運之服務著手,更重要的是還必須了解旅客行為特性,並配合接駁系統可靠度之改善,才能真正的提升整體大眾運輸之服務品質。本研究所得到的結論可提供營運管理及複合運輸場站整體規劃與接駁系統設計之參考。
This study aims to develop a mathematical model to analyze the passenger waiting time of an intermodal transit station with feeder bus services. Intercity transit system is characterized by its comparatively long headway and fixed schedules that most of the passengers have been well aware of it. Thus, the behaviors of passengers for intercity transit station are significantly different from those of urban bus systems. If the urban bus system is always considered as a major feeder system for the intercity transit, passenger waiting time and related behaviors of the intercity transit station should be influenced by the reliability of the feeder bus services. The numerical results identify that mean waiting time of intercity transit passengers is greater than half of the intercity transit headway, when the feeder service is provided with poor reliability per se; and on the contrary, mean waiting time will be less than half of the intercity transit headway when a reliable feeder service is provided. Moreover, for any negative factors in entire service, the scheduled passengers always damaged more. In order to avoid long waiting time for total passengers, headway deviation of feeder buses should be less than 3.5 minutes. In terms of intercity transit capacity, it is suggested that at least 80 % of total arrival passengers should be satisfied. The result of this study provides planners with analytic model for accurately quantifying the relations between passenger waiting time of intercity transit system (e.g., high speed rail, commuter rail, and bus) and reliability of feeder bus services.
Chapter 1. Introduction 1-1
1.1. Problem Statement 1-1
1.2. Objectives and Scope 1-2
1.3. Study Methods 1-3
1.4. Study Processes 1-3
1.5. Organization of the Dissertation 1-5
Chapter 2. Literature Reviews 2-1
2.1. Stochastic Process and Queuing Theory 2-1
2.1.1. Stochastic Process in Brief 2-1
2.1.2. Queuing Model 2-2
2.2. Intermodal Transit System 2-8
2.2.1. Definition and Characteristics 2-9
2.2.2. Capacity and Demand 2-11
2.3. Passenger Behavior and Waiting Time 2-13
2.3.1. Behavior towards Transit Service 2-13
2.3.2. Waiting Time 2-18
2.4. Summary 2-26
Chapter 3. Model Formulation and Verification 3-1
3.1. System Assumption 3-1
3.2. Key Notations 3-2
3.3. Probabilistic Analysis 3-5
3.3.1. Heterogeneous Process of Feeder Buses 3-5
3.3.2. Arrival of Scheduled Passengers 3-7
3.3.3. Arrival of Random Passengers 3-9
3.3.4. Arrival of Total Passengers 3-10
3.4. Capacity Constraint on Intercity Transit 3-11
3.5. Mean Waiting Time Model 3-11
Chapter 4. Solution Techniques 4-1
4.1. Finite Approximation 4-1
4.2. Discrete Solution Procedure 4-2
Chapter 5. Numerical Analysis 5-1
5.1. Baseline Case 5-1
5.2. Sensitivity Analysis 5-6
5.2.1. Headway of Feeder Buses 5-6
5.2.2. Headway of Intercity Transit 5-9
5.2.3. Seat Capacity of Intercity Transit 5-11
5.2.4. Percentage of Scheduled Passengers 5-12
5.2.5. Headway Deviation of Feeder Buses 5-15
5.2.6. Load Factor of Feeder Buses 5-18
5.2.7. Passengers’ Planned Punctuality Deviation to Arrive in Station ………………………………………………………………………..….5-18
5.3. Elasticity Analysis 5-20
5.4. Scenario Analysis 5-24
Chapter 6. Conclusions and Recommendations 6-1
6.1. Novelty and Constribution of this Research 6-1
6.2. Conclusions 6-2
6.3. Recommendations 6-5
References R-1
REFERENCES
1. AATA (1999) Transfer and on-time performance study: before and after AOS implementation, October 1996 — May 1999, Ann Arbor Transportation Authority (AATA), Michigan, USA.
2. Abkowitz, M.D. and Engelstein, I. (1984) Method for maintaining transit service regularity, TRR 961, TRB, National Research Council, Washington, D.C., 1-8.
3. Abkowitz, M.D., Eiger, A. and Engelstein, I. (1986) Optimal control of headway variation on transit routes, Journal of Advanced Transportation, Vol. 20, No. 1, 73-88.
4. Abkowitz, M. and Tozzi, J. (1986) Transit route characteristics and headway-based reliability control, TRR 1078, 11-16.
5. Abkowitz, M.D. and Lepofsky, M. (1990) Implementing headway-based reliability control on transit routes, Journal of Transportation Engineering, Vol. 116, No. 1, 49-63.
6. Adebisi, O. (1986) A mathematical model for headway variance of fixed-route buses, Transportation Research B, Vol. 20, No. 1, 59-70.
7. Allen, A.O. (1978) Probability, statistics, and queuing theory, Academic Press, Inc., N.Y., USA.
8. Anderson, J.E. (1984) Optimization of transit-system characteristics, Journal of Advanced Transportation, Vol. 18, No. 1, 77-111.
9. Andréasson, I. (2001) Innovative transit systems — survey of current developments, VINNOVA Report VR 2001:3, the Swedish Agency for Innovation Systems, Stockholm, Sweden.
10. Andrle, S.J. et al. (1999) Highlights of the transit capacity and quality of service manual; first edition, Research Results Digest, No. 35, TCRP, TRB, National Research Council, Washington, D.C.
11. Antonides, G., Verhoef, P.C. and van Aalst, M. (2000) Consumer perception and evaluation of waiting time: a field experiment, ERIM report series ERS-200-35-MKT, Erasmus Research Institute of Management, Rotterdam School of Management, Rotterdam, the Netherlands.
12. APTA (1998) TEA 21: a summary of transit-related provisions, American Public Transit Association (APTA), Washington, D.C., USA.
13. Batchelder, J.H. and Kullman, B.C. (1977) Analysis of integrated urban public transportation systems, TRR 639, TRB, National Research Council, Washington, D.C., 25-29.
14. Beimborn, E., Rabinowitz, H., Mrotex, C., Gugliotta, P. and Yan, S. (1992) Transit-based approach to land use design, TRR 1349, TRB, National Research Council, Washington, D.C., 107-114.
15. Bel, G.. (1997) Changes in travel time across modes and its impact on the demand for inter-urban rail travel, Transportation Research E, Vol. 33, No. 1, 43-52.
16. Bell, D.W.R. and Braaksma, J.P. (1989) Critical factors in planning multimodal passenger terminals, TRR 1221, TRB, National Research Council, Washington, D.C., 38-41.
17. Bookbinder, J.H. and Desilets, A. (1992) Transfer optimization in a transit network, Transportation Science, Vol. 26, No. 2, 106-118.
18. Booth, C., and Richardson, T. (2001) Placing the public in integrated transport planning, Transportation Policy, Vol. 8, No. 4, 141-149.
19. Bouzaïene-Ayari, B., Gendreau, M. and Nguyen, S. (2001) Modeling bus stops in transit networks: a survey and new formulations, Transportation Science, Vol. 35, No. 3, 304-321.
20. Bowman, L.A. and Turnquist, M.A. (1981) Service frequency, schedule reliability and passenger wait times at transit stops, Transportation Research A, Vol. 15, No. 6, 465-471.
21. Cambridge Shire County Council (2001) The Cambridge shire bus strategy, Cambridge, UK.
22. Ceder, A. (2000) Efficient timetabling and vehicle scheduling for public transport, Proceedings of 8th International Conference on Computer-Aided Scheduling of Public Transport, Berlin, Germany.
23. Chang, S.K. and Hsu, C.L. (2001) Modeling passenger waiting time for intermodal transit stations, TRR 1753, Journal of the Transportation Research Board, 69-75.
24. Chowdhury, S. and Chien, S. (2001) Dynamic vehicle dispatching at the intermodal transfer station, TRR 1753, Journal of the Transportation Research Board, 61-68.
25. Clever, R. (1997) Integrated timed transfer: a European perspective, TRR 1571, TRB, National Research Council, Washington, D.C., 109-115.
26. Cominetti, R. and Correa, J. (2001) Common-lines and passenger assignment in congested transit networks, Transportation Science, Vol. 35, No. 3, 250-267.
27. Commission for Integrated Transport (2000) Physical integration, DTLR, UK.
28. Commission for Integrated Transport (2000) European best practice in transport — the German example, DTLR, UK.
29. Costa, A. (1996) The organisation of urban public transport system in western European metropolitan area, Transportation Research A, Vol. 30, No. 5, 349-359.
30. Costa, A. and Markellos, R.N. (1997) Evaluating public transport efficiency with neural network models, Transportation Research C, Vol. 5, No. 5, 301-312.
31. Cox, W. and Love, J. (1993) The competitive future of urban passenger transport, proceedings of 3rd international conference on competition and ownership in public transport, Toronto, Canada.
32. DETR (2000) Guidance on the methodology for multimodal studies, Department of the Environment, Transport and the Regions (DETR), UK.
33. Ding, Y. and Chien, S. (2001) Improving transit service quality and headway regularity with real-time control, TRR 1760, Journal of the Transportation Research Board, 161-170.
34. Dougherty, M. (1995) A review of neural networks applied to transport, Transportation Research C, Vol. 3, No. 4, 247-260.
35. EMTA (2000) Towards a sustainable mobility in the European metropolitan areas — review of public transport trends and policies in the EMTA metropolises, European Metropolitan Transport Authorities (EMTA), Paris, France.
36. Evilyn, L. and Soehodho, S. (1999) Modeling dynamic scheduling of public transport system under stochastic behavior, Journal of the Eastern Asia Society for Transportation Studies, Vol. 3, No. 2, 255-270.
37. FHWA (1994) FHWA study tour for European intermodal programs: planning, policy, and technology, US DOT.
38. FHWA/FTA (2000) Transportation conformity: a basic guide for state & local officials, US DOT.
39. Florida DOT (2001) Assessment of operational barriers and impediments to transit use: transit information and scheduling for major activity centers, USA.
40. Fruin, J.J. (1972) Environmental factors in passenger terminal design, Transportation Engineering Journal, Vol. 98, TE 1, 89-101.
41. FTA (1997) High-speed ground transportation for America, US DOT.
42. FTA (2000) Advanced public transportation systems: the state of the art update 2000, US DOT.
43. Fu, M.C. (2000) Queuing theory notes, Robert H. Smith School of Business, University of Maryland, USA.
44. Furth, P.G. and Wilson, N.H.M. (1981) Setting frequencies on bus routes: theory and practice, TRR 818, TRB, National Research Council, Washington, D.C., 1-7.
45. Furth, P.G., et al. (2000) Data analysis for bus planning and monitoring, TCRP Synthesis 34, TRB, National Research Council, Washington, D.C.
46. Garner, B. et al. (2001) SWITCH: Sustainable, workable intermodal transport choices — Final report, European Commission.
47. Goodman, R. (1988) Introduction to stochastic models, the Benjamin Publishing Company, Inc., California, USA.
48. Gray, B., ed. (1989) Urban public transportation glossary, TRB, Washington, DC.
49. Gray, G.E. and Hoel, L.A. (1992) Public transportation (2nd edition), Prentice Hall, Englewood, Cliffs, New Jersey, USA.
50. Greene, W. H. (2000), Econometric analysis (4th Edition), Prentice Hall, Inc.
51. Guenthner, R.P. and Sinha, K.C. (1983) Modeling bus delay due to passenger boarding and alighting, TRR 915, TRB, National Research Council, Washington, D.C., 7-13.
52. Guenthner, R.P. and Hamat, K. (1988) Distribution of bus transit on-time performance, TRR 1202, TRB, National Research Council, Washington, D.C., 1-8.
53. Haghani, A., and Oh, S. (1996) Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations, Transportation Research A, Vol. 30, No. 3, 231-250.
54. Hall, R.W. (1985) Vehicle scheduling at a transportation terminal with random delay en route, Transportation Science, Vol. 19, No. 3, 308-320.
55. Hall, R.W., Parekh, C., and Thakker, V. (1998) Intermodal transportation operation system (ITOS) for the state of California, California PATH Working Paper, prepared by University of Southern California.
56. Hallowell, S.F., and Harker, P.T. (1998) Predicting on-time performance in scheduled railroad operations: methodology and application to train scheduling, Transportation Research A, Vol. 32, No. 4, 279-295.
57. Haupt, T. (1999) Planning and analyzing transit networks — an integrated approach regarding requirements of passengers and operators, Proceedings of 2nd GIS in Transit Conference, Tampa, Florida, USA.
58. Haynes, K. (1997) Intermodalism, Journal of Transport Geography, Vol. 5, No. 1, 21-22.
59. Henderson, G., Kwong, P. and Adkins, H. (1991) Regularity indices for evaluating transit performance, TRR 1297, TRB, National Research Council, Washington, D.C., 3-9.
60. Henk, R.H. and Hubbard, S.M. (1996) Developing an index of transit service availability, TRR 1521, TRB, National Research Council, Washington, D.C., 12-19.
61. Hickey, T.R. (1992) Coordination of intermodal transfer at LRT stations, TRR 1361, TRB, National Research Council, Washington, D.C., 136-140.
62. Hodge, D.C. (1997) Accessibility-related Issues, Journal of Transport Geography, Vol. 5, No. 1, 33-34.
63. Howard/Stein-Hudson Associates, Inc. (1998) I- 95 corridor coalition intermodal passenger leadership summit, Summery of the Meeting, Prepared by Howard/Stein-Hudson Associates, Inc.
64. Institution of Civil Engineers (1993) Modern railway transportation, proceedings of the international conference “Railways”, Thomas Telford, London, UK.
65. ITE (1980) Transit station access, Technical Council Information Report, USA.
66. Jasson, K. (1993) Optimal public transport price and service frequency, Journal of Transport Economics and Policy, Vol. 27, 33-50.
67. Jolliffe, J.K. and Hutchinson, T.P. (1975) A behavioral explanation of the association between bus and passenger arrivals at a bus stop, Transportation Science, Vol. 9, No. 3, 248-282.
68. Jones, D. (1982) Design, construction and rehabilitation of public transit facilities, ASCE, New York.
69. Jordan, W.C. and Turnquist, M.A. (1979) Zone scheduling of bus routes to improve service reliability, Transportation Science, Vol. 13, No. 3, 242-268.
70. Kaj, I. (2002) Stochastic modeling for engineering studies, Department of Mathematics, Uppsala University, Sweden.
71. Kaj, I. and Gaigalas, R. (2002) Stochastic simulation using MATLAB, Department of Mathematics, Uppsala University, Sweden.
72. Keeler, T.E., Merewitz, L.A., and Fisher, P.M.J. (1975) The full costs of urban transport (Part 1~3), Institute of Urban & Regional Development, University of California, Berkeley.
73. Kindermann, R. and Snell, J.L. (2000) Markov random fields and their applications, American Mathematical Society, Rhode Island, USA.
74. Knoppers, P. and Muller, T. (1995) Optimized transfer opportunities in public transport, Transportation Science, Vol. 29, No. 1, 101-105.
75. Koffman, D. (1978) A simulation study of alternative real-time bus headway control strategies, TRR 663, TRB, National Research Council, Washington, D.C., 41-46.
76. Kraft, W.H. (1977) Bus passenger service — time distribution, TRR 625, TRB, National Research Council, Washington, D.C., 37-43.
77. Lan, L.W. and Chiou, Y.C. (1999) Integrated optimization models for the feeder/transfer systems in a linear hub-and-spoke intercity bus network, Journal of the EASTS, Vol. 3, No. 2, 317-332.
78. Lee, K.T. and Schonfeld, P.M. (1994) Real-time dispatching control for coordinated operation in transit terminals, TRR 1433, TRB, National Research Council, Washington, D.C., 3-9.
79. Leibson, R. and Penner, W. (1996) Legal issues associated with intermodalism, Legal Research Digest, No. 5, TCRP, TRB, National Research Council, Washington, D.C.
80. Levinson, H.S. (1991) Supervision strategies for improved reliability of bus routes, National Cooperative Transit Research & Development Program, Synthesis of Transit Practice, No. 15.
81. Lin, G.S., Liang, P., Schonfeld, P. and Larson, R. (1995) Adaptive control of transit operations, Transportation Studies Center, University of Maryland, Final Report for Project MD-26-7002, FTA, U.S. DOT.
82. Litman, T. (2002) Evaluating public transit benefits and costs, Victoria Transport Policy Institute, Canada.
83. May, A.D. (1990) Traffic flow fundamentals, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA.
84. May, A.D. and Roberts, M. (1995) The design of integrated transport strategies, Transport Policy, Vol. 7, No. 2, 97-105.
85. Marguier, P.H.J. and Ceder, A. (1984) Passenger waiting strategies for overlapping bus routes, Transportation Science, Vol. 18, No. 3, 207-230.
86. Martinelli, D.R. and Teng, H. (1996) Optimization of railway operations using neural networks, Transportation Research C, Vol. 4, No. 1, 33-49.
87. Maxwell, R.R. (1999) Intercity rail fixed-interval, timed-transfer, multihub system — applicability of the integraler taktfahrplan — strategy to north America, TRR 1691, Journal of the Transportation Research Board, National Research Council, Washington, D.C., 1-11.
88. Meyer, M.D. and Miller, E.J. (2001) Urban transportation planning (2nd edition), McGraw-Hill, Inc.
89. Motwani, R. and Raghavan, P. (1995) Randomized algorithms, Cambridge University Press, UK.
90. Nakanishi, Y.J. (1997) Bus performance indicators: on-time performance and service regularity, TRR 1571, TRB, National Research Council, Washington, D.C., 3-13.
91. NCIT (2001) A new transportation agenda for America — in the aftermath of 11 September 2001, National Center for Intermodal Transportation (NCIT), USA.
92. Newell, G.F. (1971) Applications of queuing theory, Chapman and Hall Ltd., London.
93. Nijkamp, P., and Geenhuizen, M.V. (1997) European transport: challenges and opportunities for future research and policies, Journal of Transport Geography, Vol. 5, No. 1, 4-11.
94. Office of the Auditor General (1997) Bus reform — competition reform of trans-Perth bus services, Performance Examination Report No. 3, Western Australia.
95. Oliver, A.M. (1971) The design and analysis of bus running times and regularity, London Transport, England.
96. Oregon DOT (1997) Oregon’s intermodal management system, USA.
97. Orloff, C.S. and Ma, Y.Y., (1975) Analytic supply models for many-to-one transportation system, Final Report, Princeton University, USA.
98. Osuna, E.E. and Newell, G.F. (1972) Control strategies for an idealized public transport system, Transportation Science, Vol. 6, No.1, 52-72.
99. Owens, E. and Lewis, C.A. (2002) ISTEA and intermodalism: a user and reference guide to intermodalism, Research Report SWUTC/466050-1, Center for Transportation Training and Research, Texas Southern University, USA.
100. Özekici, S. (1987) Average waiting time in queues with scheduled batch services, Transportation Science, Vol. 21, No. 1, 55-61.
101. Panico, J.A. (1969) Queuing theory: a study of waiting lines for business, economics, and science, Prentice Hall, Inc., Englewood Cliffs, N.J., USA.
102. Pardalos, P.M. and Resende, G.C. (2002), Handbook of applied optimization, Oxford University Press.
103. Park, M. and Alto, P. (1996) Institutional barriers to intermodal transportation policies and planning in metropolitan areas, TCRP Report 14, National Research Council, Washington, D.C.
104. Phillips, R. et al. (2001) Multi-modal level of service. Final Report for Florida DOT, Department of Urban and Regional Planning, University of Florida, USA.
105. Pierlott, G. (2001) New developments in bus transit systems, TRB Bus Transit Systems Committee Newsletter, Vol. 1, No. 1.
106. Polzin, S.E. and Schofer, J.L. (1979) Service quality implications of tranbus, Transportation Engineering Journal, Vol. 105, No. TE5, 561-576.
107. Polzin, S.E., Rey, J.R. and Chu, X. (1998) Public transit in America: findings from the 1995 nationwide personal transportation survey, Center for Urban Transportation Research, University of South Florida, USA.
108. Pullen, W.T. (1993) Definition and measurement of quality of service for local public transport management, Transport Reviews, Vol. 13, No. 3, 247-264.
109. Reynolds, M.M. and Hixson, C.D. (1992) Transit vehicle meets system: a method for measuring transfer times between transit routes, TRR 1349, TRB, National Research Council, Washington, D.C., 35-41.
110. Rubin, T.A. (2000) The future of mass transit in the United States: can we get there from here, VERITAS- A Quarterly Journal of Public Policy in Texas, summer, 14-25.
111. Salvatore, D. (1993) Managerial economics in a global economy (2nd edition), McGraw-Hill, Inc.
112. Salzborn, F.J.M. (1972) Optimum bus scheduling, Transportation Science, Vol. 6, No. 2, 137-148.
113. Salzborn, F.J.M. (1980) Scheduling bus systems with interchanges, Transportation Science, Vol. 14, No. 3, 211-231.
114. Schnaars, S.P. (1991) Marketing strategy: a customer-driven approach, The Free Press, New York.
115. Schneider, J.B. and Smith, S.P. (1981) Redesigning urban transit systems: a transit-center-based approach, TRR 798, TRB, National Research Council, Washington, D.C., 56-65.
116. Schwartz, B. (1975) Queuing and waiting, the University of Chicago Press, USA.
117. Schwartz, G. (1978) Estimating the dimension of a model, Annals of Statistics, Vol. 6, 461-464.
118. Seneviratne, P.N. (1990) Analysis of on-time performance of bus services using simulation, Journal of Transportation Engineering, Vol. 166, No. 4, 517-531.
119. Seshagiri, N., Narasimhan, R., Mehndiratta, S.L. and Chanda, B.K. (1969) Computer generated timetables and bus schedules for a large bus transport network, Transportation Science, Vol. 3, No. 1, 69-85.
120. Sheffi, Y. (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods, Prentice-Hall, Inc., New Jersey, USA.
121. Simpson, B.J. (1994) Urban public transport today, E & FN Spon, UK.
122. Site, P.D. and Filippi, F. (1998) Service optimization for bus corridors with short-turn strategies and variable vehicle size, Transportation Research A, Vol. 32, No. 1, 19-38.
123. Site, P.D., and Filippi, F. (2001) Bus service optimisation with fuel saving objective and various financial constraints, Transportation Research A, Vol. 35, No. 2, 157-176.
124. Spek, S.C. van der (1998) Intermodal transfer points: a general introduction, Faculty of Architecture, Delft University of Technology, the Netherlands.
125. Sterman, B.P. and Schofer, J.L. (1976) Factors affecting reliability of urban bus services, Transportation Engineering Journal, Vol. 102, TE 1, 147-159.
126. Stern, R. et al. (1996) Passenger transfer system review, TCRP Synthesis 19, TRB, National Research Council, Washington, D.C.
127. Stough, R.R., and Rietveld, P. (1997) Institutional issues in transport systems, Journal of Transport Geography, Vol. 5, No. 3, 207-214.
128. Strathman, J.G. and Hopper, J.R. (1993) Empirical analysis of bus transit on-time performance, Transportation Research A, Vol. 27, No. 2, 93-100.
129. Taipei DOT (1997) A detail planning and design for the city government transfer station — Vol. 1 & 2. (In Chinese)
130. Taylor, M.A.P. (1982) Travel time variability — the case of two public modes, Transportation Science, Vol. 16, No. 4, 507-521.
131. T&E (2002) Taking the bull by the horns: urban transport in Europe, European Federation of Transport and Environment, Brussels, Belgium.
132. Terzis, G. et al. (2000) GUIDE — Urban interchanges — A good practice guide (Final report), MVA Ltd., prepared for European Commission.
133. Texas DOT (2001) Transportation multimodal systems manual, USA.
134. Thomas, J.B. (1971) An introduction to applied probability and random processes, John Wiley & Sons, Inc., USA.
135. Transport Statistics (2002) Bus quality indicators: England, April-June, Transport Statistics Bulletin, Department for Transport, UK.
136. Tumquist, M.A. (1978) A model for investigating the effects of service frequency and reliability on bus passenger waiting times, TRR 663, TRB, National Research Council, Washington, D.C., 70-73.
137. Tumquist, M.A. and Blume, S.W. (1980) Evaluation potential effectiveness of headway control strategies for transit system, TRR 746, TRB, National Research Council, Washington, D.C., 25-29.
138. Tumquist, M.A. (1981) Strategies for improving reliability of bus transit service, TRR 818, 7-13.
139. UITP (2000) Green light for towns, Brussels, Belgium.
140. US DOT (2000) Transportation decision making: policy architecture for the 21st century.
141. US DOT (2000) The changing face of transportation.
142. Uyeno, D.H., and Willoughby, K.A. (1995) Transit centre location — allocation decisions, Transportation Research A, Vol. 29, No. 4, 263-272.
143. Welding, P.I. (1957) The instability of a close interval service, Operations Research Quarterly, Vol. 8, 133-148.
144. Weyrich, P.M. and Lind, W.S. (2001) Twelve anti-transit myths: a conservative critique, the Free Congress Foundation, Washington, D.C., USA.
145. Willing, A. (1999) A short introduction to queuing theory, Telecommunication Group, Technical University Berlin, Germany.
146. Willoughby, C. (2000) Transport services in the 21st century: seamless market or choiceless churning? TWU series paper, TWU-33, the World Bank.
147. Wilson, N.H.M. et al (1992) Service-quality monitoring for high frequency transit lines, TRR 1349, TRB, National Research Council, Washington, D.C., 3-11.
148. Yu, J.C. and Lall, U. (1985) System and route optimization model for minimizing urban transport operating deficits, TRR 1013, TRB, National Research Council, Washington, D.C., 9-19.
149. Zayezdny, A., Tabak, D., and Wulich, D. (1989) Engineering applications of stochastic processes, Research Studies Press, Ltd., England.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳麗娟(民87a)。唯有放下他人,才能釋放自己-談共依附治療模式。諮商與輔導(145),18-23。
2. 張高賓(民90)。單親兒童父母教養方式、家庭環境與情緒穩定之關係研究。屏東師院學報,14(上),465-504。
3. 吳麗娟(民88)。共依附父母的親職教育:放下孩子,釋放自己。諮商與輔導(157),17-23。
4. 吳麗娟(民86)「個體化」、「自我分化」的另一端-談「共依附」的意義與內涵。諮商與輔導(144),33-37。
5. 吳麗娟(民87b)。共依附父母的特質與其對孩子的影響。諮商與輔導(154),12-19。
6. 林萬億、吳季芳(民87)。男女單親家長生活適應之比較分析。中國社會學刊,17:127-162。
7. 李有村(民87)。單親家庭的親職教育,測驗與輔導,151:3147-3149.
8. 蔡錦德(民90)。阿德勒式團體在低收入戶青少年輔導的運用與實務。輔導通訊,68,36-41。
9. 廖本富(民89)。從新得力之治療概念與運用技巧。諮商輔導文粹,5,131-149頁。
10. 張英陣、彭淑華(民85)。從優勢的觀點論單親家庭。東吳社會工作學報,2,227-272。
11. 萬育維(民86)。從自立自尊的觀點反省社會救助與貧窮問題。社會建設,97,16-31。
12. 陳智修(民91)。中學資優學生職業發展之議題與輔導。資優教育季刊,83,21-27。
13. 孫健忠(民89)。社會救助制度的新思考。社區發展季刊,91,240-251。
14. 呂朝賢(民88)。社會救助問題:政策目的、貧窮定義與測量。人文及社會科學集刊,11,2,233-263。
15. 楊妙芬(民84)。單親兒童非理性信念、父母管教態度、自我概念與人際關係之研究。屏東師院學報,第8期,71-110。
 
系統版面圖檔 系統版面圖檔