跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮倩君
研究生(外文):Sin-Kuan Fong
論文名稱:以多參考站為基礎之GPS即時動態定位演算法發展
論文名稱(外文):An Algorithm for Network-Based Real-Time Kinematic GPS Positioning
指導教授:楊 名
指導教授(外文):Ming Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量工程學系碩博士班
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:全球衛星定位系統即時動態定位虛擬參考站
外文關鍵詞:RTKReal-Time Kinematic PositioningGPSVRSGlobal Positioning SystemVirtual Reference Station
相關次數:
  • 被引用被引用:42
  • 點閱點閱:1305
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:1
  傳統單一參考站的即時動態定位(Real Time Kinematic, RTK)受電離層、對流層等系統誤差影響,使得移動站只能在參考站大約10公里範圍內才有可能達到公分級的定位精度;雖然中距離(< 50公里)即時動態定位演算技術已經證明可以達到公分級的定位精度,但隨著基線距離的增長所需的整數週波未定值求解收斂時間也就越久,主要原因是二次差無法有效地消除觀測量中的系統誤差影響量;因此若能利用區域內多個GPS固定站的資料即時地對區域性的系統誤差模式化,從而得到區域內觀測數據的系統誤差影響量,這樣可大大增加RTK之可用範圍,同時提昇系統的效率及可靠度。
 
  本文設計出一種演算法,利用卡曼濾波解算出參考站網的週波未定值,從而建立區域內即時性的系統誤差模式,利用此系統誤差模式以內插的方式根據移動站的概略坐標產生虛擬參考站(Virtual Reference Station, VRS),最後此虛擬參考站與移動站進行標準的短基線RTK定位得到移動站之點位坐標。文中以兩組實驗資料(參考站間距為65~80公里)驗証演算法的可行性,及分析其定位精度及效率;成果顯示,本文所提出之多參考站即時動態定位演算法之平面定位精度在5公分以內,高程定位精度在15公分以內,而即時動態定位過程均能在數筆(1~4筆)資料內完成搜尋整數週波未定值並解算出移動站坐標。
  Conventional single-reference station Real-Time Kinematic (RTK) positioning is affected by systematic errors such as ionospheric and tropospheric errors, so that rover must be located within about 10 Km of the reference station in order to acquire centimeter-level accuracy. Medium-range (<50 Km) RTK have been proven feasible and can be used for high-precision applications; however, the time for resolving integer ambiguity becomes longer as baseline length increases. This is due to the fact that systematic errors cannot be eliminated effectively by double-differencing. Recently, network approaches have been proposed to overcome the limitation of single-reference RTK. With the use of reference station network, real-time systematic error modeling can be achieved and systematic biases within the network are derived from the model. In this way, the effective coverage area of RTK is increased; efficiency and reliability of the RTK system are also improved.

  This study proposes a network-based RTK algorithm in which Kalman filter is implemented for resolving ambiguities within the network. Then real-time systematic error model is built using information from the network, and location-dependent systematic biases are obtained via interpolation. These interpolated biases are sequently used in the generation of observations of a Virtual Reference Station(VRS) which simulates a local reference station near the rover. At last standard short-baseline RTK is performed between the VRS and the rover. Two groups of test data (reference stations about 65~80 Km apart) are used to examine the feasibility of the algorithm, positioning accuracy and efficiency are also analyzed. Test results show that the horizontal positioning accuracy of the proposed network-based RTK algorithm is within 5 cm, and within 15 cm for the height component. For the efficiency of the RTK positioning process, all ambiguities are revolved within 4 epochs.
摘要-----------------------------------------------I
ABSTRACT------------------------------------------II
誌謝---------------------------------------------III
目錄----------------------------------------------IV
表目錄--------------------------------------------VI
圖目錄-------------------------------------------VII

第一章 緒論----------------------------------------1
  § 1-1 前言-------------------------------------1
  § 1-2 文獻回顧---------------------------------2
  § 1-3 研究方法---------------------------------4

第二章 全球定位系統即時動態定位--------------------5
  § 2-1 GPS定位原理------------------------------5
  § 2-2 GPS觀測量--------------------------------5
    § 2-2-1 虛擬距離觀測量---------------------6
    § 2-2-2 載波相位觀測量---------------------7
  § 2-3 觀測量誤差來源---------------------------8
  § 2-4 相對定位--------------------------------12
    § 2-4-1 一次差分--------------------------13
    § 2-4-2 二次差分--------------------------14
  § 2-5 雙頻載波相位觀測量之線性組合------------15
  § 2-6 單一參考站即時動態定位------------------17
  § 2-7 多參考站即時動態定位--------------------18

第三章 多參考站即時動態定位演算法設計-------------21
  § 3-1 多參考站即時週波未定值解算--------------22
    § 3-1-1 電離層與對流層之影響--------------23
    § 3-1-2 卡曼濾波估計----------------------26
    § 3-1-3 LAMBDA 低相關化搜尋固定解---------30
  § 3-2 產生虛擬參考站的觀測量------------------38
    § 3-2-1 系統誤差改正量內插----------------38
    § 3-2-2 組成虛擬參考站觀測量--------------40
  § 3-3 虛擬參考站與移動站短基線RTK定位---------42

第四章 實驗與成果分析-----------------------------45
  § 4-1 實驗資料--------------------------------45
  § 4-2 系統誤差內插成果分析--------------------48
  § 4-3 零基線定位成果精度分析------------------56
  § 4-4 虛擬參考站與移動站定位成果精度分析------60

第五章 結論與建議---------------------------------65

參考文獻------------------------------------------67
唐進賢,中距離(10-50公里) GPS即時動態定位演算法之研究,國立成功大學測量工程碩士論文,台南,1999。

徐博賢、張仁均、朱森,GPS精密定位時接收儀天線相位中心之校正,第二屆兩岸測繪學術研討會暨第十七屆測量學術及應用研討會論文集,台南,pp.77-86,1998。

黃文祺,以低相關化技巧求解週波未定值時超橢球方位變化之探討,國立台灣大學土木工程學研究所碩士論文,台北,2001。

曾清涼、儲慶美,GPS衛星測量原理與應用,國立成功大學衛星資訊研究中心,第二版,台南,1999。

楊 名,公分級GPS衛星即時動態定位系統,測量工程,第三十九卷,第四期,pp. 1-18,1997。

楊 名、余致義,即時動態GPS應用於控制測量與戶地測量之設計與實驗,地籍測量,第十六卷,第四期,pp. 1-32,1997。

楊 名、唐進賢,10-50公里即時動態GPS演算法之設計與評估,測量工程,第四十卷,第一期,pp. 5-22,2000。

蕭志書,怏速強鈍即時性GPS動態測量系統之研究,國立成功大學測量工程研究所碩士論文,台南,1995。

Bevis, M., S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware, GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, Journal of Geophysical Research, Vol. 97, No. D14, pp. 15 787-15 801, 1992.

Brinker, R.C. and R. Minnick, The Surveying Handbook, Second Edition, Chapman & Hall, New York, 1995.

Businger, S., S.R. Chiswell, M. Bevis, J. Duan, R.A. Anthes, C. Rocken, R.H. Ware, M. Exner, T. VanHove, and F.S. Solheim, The Promise of GPS in Atmospheric Monitoring, Bulletin of American Meteorology Society, Vol. 77, No. 1, pp. 5-18, 1996.

Darin, F., J. Johansson, R. Carlsson, G. Elgered, P. Jaelemark, and B. Ronnang, Continuous Monitoring of the Atmosphere Using GPS, Proceedings of ION GPS 1997, Kansas City, Missouri, U.S.A., pp.199-205, September 16-19, 1997.

Duan, J.P., M. Bevis, P. Fang, Y. Bock, S. Chiswell, S. Businger, C. Rocken, F. Solheim, T. van Hove, R. Ware, S. McClusky, T.A. Herring, and R.W. King, GPS Meteorology: Direct Estimation of the Abolute Value of Perceptiable Water, Journal of Applied Meteorology, Vol. 35, No. 6, pp. 830-838, 1996.

Gelb, A. (Editor), Applied Optimal Estimation, The M.I.T. Press, Cambridge, Massachusetts, and London, England, 1979.

Goad, C. and L. Goodman, A Modified Hopfield Tropospheric Refraction Correction Model, Proceedings of the Fall Annual Meeting of the American Geophysical Union, San Francisco, California, 1974.

Goad, C. and M. Yang, A New Approach to Precision Airborne GPS Positioning for Photogrammetry, Photogrammetric Engineering & Remote Sensing, Vol. 63, No. 9, pp. 1067-1077, September, 1997.

Hu, G.R., H.S. Khoo, P.C. Goh, and C.L. Law, Development and Assessment of GPS Virtual Reference Stations for RTK Positioning, Journal of Geodesy, Vol. 77, No. 5-6, pp.292-302, 2003.

Fotopoulos, G. and M.E. Cannon, An Overview of Multi-Reference Station Methods for Cm-Level Positioning, GPS Solutions, Vol. 4, No. 3, pp. 1-10, 2001.

Koch, K.-R., Parameter Estimation and Hypothesis Testing in Linear Models, Second Edition, Springer, Berlin, 1999.

Lachapelle, G., P. Alves, L. P. Fortes, M. E. Cannon, DGPS RTK Positioning Using a Reference Network, ION GPS 2000, Salt Lake City, Utah, pp1165-1171, September 19-22, 2000.

Leick, A., GPS Satellite Surveying, Second Edition, John Wiley & Sons, New York, 1995.

International GPS Service (IGS) 網站: http://igscb.jpl.nasa.gov/components/prods.html

de Jonge, P.J. and C.C.J.M. Tiberius, The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects, Delft Geodetic Computing Centre LGR Series, No. 12, Delft University of Tecnology, 1996.

McCorkle, D., The Earth's Atmosphere, Astronomy 161 The Solar System Course Lecture Notes, Department of Physics and Astronomy, University of Tennessee, 1998.
http://csep10.phys.utk.edu/astr161/lect/earth/atmosphere.html

Raquet, J. and G. Lachapelle, Development and Testing of a Kinematic Carrier-Phase Ambiguity Resolution Method Using a Reference Receiver Network, Navigation, Journal of The Institute of Navigation Vol. 46, No. 4, pp. 283-295, 1999.

Seeber, G., Satellite Geodesy: Foundations, Methods, and Applications, Waler de Gruyter, Berlin, New York, 1993.

Sun, H., M.E. Cannon, and T.E. Melgard, Real-Time GPS Reference Network Carrier Phase Ambiguity Resolution. Institute of Navigation National Technical Meeting, San Diego, California, pp. 193-199, January 25-27, 1999.

Teunissen, P.J.G., The Least-squares Ambiguity Decorrelation Ajustment: Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82, 1995.

Teunissen, P.J.G., P.J. de Jonge, and C.C.J.M. Tiberius, The Least-squares Ambiguity Decorrelation Adjustment: its Performance on Short GPS Baselines and Short Observation Spans, Journal of Geodesy, Vol. 71, No. 10, pp. 589-602, 1997.

Trimble VRS System 網址:http://www.trimble.com/vrs.html

WaSoft/Virtuell 網址:http://www.wasoft.de/e/index.html

Vollath, U., A. Buecherl, H. Landau, C. Pagels, and B. Wagner, Multi-Base RTK Positioning Using Virtual Reference Stations, Proceedings of ION GPS 2000, Salt Lake City, Utah, pp. 123-131, September 19-22, 2000.

Vollath, U., H. Landau, X. Chen, K. Doucet, and C. Pagels, Network RTK Versus Single Base RTK - Understanding the Error Characteristics, Proceedings of ION GPS 2002, Portland, OR, pp. 2774-2781, September 24-27, 2002.

Wanninger, L., Virtual Reference Stations for Centimeter-Level Kinematic Positioning, Proceedings of ION GPS 2002, Portland, OR, pp. 1400-1408, September 24-27, 2002.

Wells, D.E., N. Beck, D. Delikaraoglou, A. Kleusberg, E.J. Krakiswsky, G. Lachapelle, R.B. Langley, M. Nakiboglou, K.P. Schwarz, J. Tranquilla, and P. Vanicek, Guide to GPS Positioning, Canadian GPS Associates, Fredericton, New Brunswick, Canada, 1998.

Wubbena, G., A. Bagge, and M. Schmitz, RTK Networks based on Geo++R GNSMART - Concepts, Implementation, Results, Proceedings of ION GPS 2001, Salt Lake City, Utah, pp. 368-378, September 11-14, 2001.

Zhang, J., Investigation into the Estimation of Residual Tropospheric Delays in a GPS Network, UCGE rep. 20132, University of Calgary, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top