跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏宗德
研究生(外文):Tzong-Der Way
論文名稱:類黃酮及茶多酚之乳癌化學預防
論文名稱(外文):Chemoprevention against breast cancer by flavonoids and tea polyphenols
指導教授:林仁混林仁混引用關係
指導教授(外文):Jen-Kun Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:111
中文關鍵詞:HER3PI3KAkt細胞凋亡乳癌HER2/neu芹菜素
外文關鍵詞:PI3KapoptosisHER3apigeninAktHER2/neubreast cancer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:492
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
第一部份:
類黃酮是由多種植物所產生的一群多樣的植物化合物。在類黃酮化合物中,apigenin (4'',5,7-trihydroxyflavone)是一種低毒性及無誘導突變性的植物多酚類(phytopolyphenol)及蛋白質磷酸酶抑制劑(protein kinase inhibitor)。同時它也具有抑制人類乳癌細胞生長的弁遄C在我們最近的實驗中發現,在不同HER2/neu致癌基因表現量的乳癌細胞中,apigenin對過度表現HER2/neu乳癌細胞抑制生長效果比基礎量HER2/neu的乳癌細胞來的好。Apigenin會誘發過度表現HER2/neu的乳癌細胞細胞凋亡,然而其分子機制仍有待探討。在過度表現HER2/neu的乳癌細胞中,一個包含phosphatidylinositol 3’-kinase(PI3K)及AKT的訊息傳遞途徑,已知對抑制細胞死亡扮演一個重要的角色。因此促使我們去探討此訊息傳遞途徑是否對apigenin誘發過度表現HER2/neu的乳癌細胞細胞凋亡扮演一個重要的角色。研究結果發現apigenin抑制癌症細胞中AKT的活性是一種複合式的方式:首先,apigenin直接抑制PI3K的活性然而並非直接抑制AKT的活性;第二,藉由減少HER2/neu蛋白質的量而使HER2/neu蛋白質磷酸化及磷酸化其他受質的能力下降;此外,apigenin藉由抑制PI3K結合到HER2/HER3 二聚物來達到抑制AKT的活性。由此我們推測apigenin所擁有的細胞活性主要是藉由減少HER2/neu及HER3蛋白表現量來達到抑制跟細胞存活及抑制細胞凋亡有關的PI3K及AKT訊息傳遞途徑。這表示抑制HER2/HER3二聚物的弁鄍i以對於過度表現HER2/neu的乳癌細胞提供一個專一有效的治療策略。研究結果同時證實apigenin可以將HER2/neu與一個跟HER2/neu穩定有關的蛋白質GRP94分離。Apigenin減少成熟HER2/neu蛋白質量的過程,主要包含了將HER2/neu polyubiquitination及接下來藉由proteasome將HER2/neu水解。這些發現證實對於過度表現HER2/neu的乳癌細胞而言,apigenin具有有效的治療或預防的效果。接著,為了探討此訊息傳遞途徑對抗癌效果的重要性,將過度表現HER2/neu的乳癌細胞處理apigenin,發現它會藉由cytochrome c 的釋放、快速活化caspase-3的活性及刺激DFF-45的分解來引起細胞凋亡。此外,apigenin 會降低cyclin D1 及 cyclin D3的表現及增加 p27 蛋白質的表現。軟膠的群落實驗是細胞轉形的一種重要特徵,apigenin 對HER2/neu過度表現的乳癌細胞有明顯抑制的效果。 最後在結構活性的研究中發現:(1) B 環的位置及(2) 第2位置上芳香環上的3'', 4''-hydroxyl 是類黃酮降低HER2/neu 蛋白表現的重要結構。本研究結果提供了關於類黃酮類化合物結構活性關係上的一個重要的資訊。

第二部份:
Aromatase主要的作用是將雄烯二酮轉換為雌性激素,進而達到調節雌激素促進赫爾蒙需要型乳癌細胞生長的能力。在本篇研究當中,調查了紅茶茶多酚對aromatase的抑制效果,發現紅茶茶多酚TF1, TF2 及 TF3可以顯著的抑制老鼠及人類胎盤的aromatse酵素活性。此外,利用一個細胞體內的模式發現紅茶亦可以抑制100 nM DHEA所引起的MCF-7細胞增生。轉殖HER2/neu 基因至MCF-7細胞中會使得它對赫爾蒙治療產生抗藥性。有趣的是不似選擇性雌激素接受子調節者(SERM) tamoxifen ,紅茶茶多酚對於這種具有抗藥性的乳癌細胞具有抑制細胞增殖的效果。這種抑制抗藥性乳癌細胞增殖的弁鄍D要是由於紅茶茶多酚可以抑制HER2/neu 接受子的酪氨酸的磷酸化。這些發現證實使用紅茶茶多酚可以對赫爾蒙依賴型的乳癌細胞作為一個有效的化學預防效果,對於赫爾蒙不依賴型的乳癌細胞可以克服赫爾蒙療法所產生的抗藥性問題。
Part I:
Flavonoids are a diverse group of phytochemicals that are produced by various plants. Among the flavonoids, apigenin (4'',5,7-trihydroxyflavone) is one of the most effective in inducing cell growth inhibition and is relatively nontoxic and nonmutagenic. Here we examined several human breast cancer cell lines having different levels of HER2/neu expression, and found that apigenin exhibited potent growth-inhibitory activity in HER2/neu-overexpressing breast cancer cells, but was much less effective for those cells expressing basal levels of HER2/neu. Induction of apoptosis was also observed in HER2/neu-overexpressing breast cancer cells in a dose- and time-dependent manner. However, the molecular mechanism(s) of apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells remained to be elucidated. A cell survival pathway involving phosphatidylinositol-3�S-kinase (PI3K) and Akt is known to play an important role in inhibiting apoptosis in response to HER2/neu-overexpressing breast cancer cells, which prompted us to investigate whether this pathway plays a role in apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells. Our results showed that apigenin inhibits Akt function in tumor cells in a complex manner. First, apigenin directly inhibited the PI3K activity while indirectly inhibited the Akt kinase activity. Second, inhibition of HER2/neu autophosphorylation and transphosphorylation resulting from depleting HER2/neu protein in vivo was also observed. In addition, apigenin inhibited Akt kinase activity by preventing the docking of PI3K to HER2/HER3 heterodimers. Therefore, we proposed that apigenin-induced cellular effects result from loss of HER2/neu and HER3 expression with subsequent inactivation of PI3K and AKT in cells that are dependent on this pathway for cell proliferation and inhibition of apoptosis. This implies that the inhibition of the HER2/HER3 heterodimer function provided an especially effective strategy for blocking the HER2/neu-mediated transformation of breast cancer cells. Our results also demonstrated that apigenin dissociated the complex of HER2/neu and GRP94 that preceded the depletion of HER2/neu. Apigenin-induced degradation of mature HER2/neu involves polyubiquitination of HER2/neu and subsequent hydrolysis by the proteasome. These findings suggest that apigenin may be an effective chemotherapeutic and preventive agent against HER2/neu-overexpressing breast cancer cells. Next, to examine whether inhibition of this pathway play a role in the antitumor effect, we demonstrated that treatment with apigenin induced apoptosis through cytochrome c release and caused a rapid induction of caspase-3 activity and stimulated proteolytic cleavage of DFF-45. Furthermore, apigenin down-regulated cyclin D1 and cyclin D3, and increased p27 protein levels. Colony formation in the soft agar assay, a hallmark of the transformation phenotype, was preferentially suppressed in HER2/neu-overexpressing breast cancer cells by apigenin. A structure-activity study indicated that (1) the position of B ring; and (2) the existence of the 3'', 4''-hydroxyl group on the 2-phenyl group are important factors affecting flavonoids depleted HER2/neu protein. This provides new information on the structure-activity relationship of flavonoids.

Part II:
The aromatase enzyme, which converts androstenedione to estrone, regulates the availability of estrogen to support the growth of hormone-dependent breast tumors. In this study, we investigated the inhibitory effects on aromatase activities by the black tea polyphenols. We found that black tea polyphenols, TF1, TF2 and TF3 significantly inhibited rat ovarian and human placental aromatase activities. In addition, using an in vivo model, these black tea polyphenols also inhibited the proliferation induced by 100 nM DHEA in MCF-7 cells. Transfection of HER2/neu in MCF-7 breast cancer cells appeared to be associated with an increased resistance of the cells to hormonal therapy. Interestingly, unlike the selective estrogen receptor modulator (SERM) tamoxifen, black tea polyphenols expressed antiproliferation effects in breast cancer cells with hormonal resistance. The inhibitory effect of black tea polyphenols on hormone-resistant breast cancer cells suppressed the basal receptor tyrosine phosphorylation in HER2/neu-overexpressing MCF-7 cells. These findings suggest the use of black tea polyphenols may be beneficial in chemoprevention of hormone-dependent breast tumors and represent a possible remedy to overcome hormonal resistance of hormone-independent breast tumors.
Table of Contents
Abbreviations 1

Part I: Mechanism studies by which apigenin inhibits HER2/neu-overexpressing breast cancer cells growth 3
摘要 4
Abstract 6
List of Figures 8
Chapter1. Overview and Rationale 9
Chapter2.
Introduction 14
Materials and Methods 19
Results 25
Discussion 35
References 43
Figures and Figure legends 51

Part II: Mechanism studies by which black tea polyphenol theaflavins inhibit aromatase activity and attenuate tamoxifen resistance in HER2/neu-transfected breast cancer cells 74
摘要 75
Abstract 76
List of Figures 77
Chapter 1. Overview and Rationale 78
Chapter 2.
Introduction 82
Materials and Methods 85
Results 89
Discussion 93
References 98
Figures and Figure legends 100

Vita 110
1.Hodek, P., Trefil, P., and Stiborova, M. (2002) Chem. Biol. Interact. 139, 1-21
2. Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., and Yano, M. (1999) Biosci. Biotech. Biochem. 63, 896–899
3. Rose, D. P., Boyar, A. P., and Wynder, E. L. (1986) Cancer 58, 2363–2371
4. Kuo, M. L., Lee, K. C., and Lin, J. K. (1992) Mutat. Res. 270, 87–95
5. Chaumontet, C., Bex, V., Gaillard-Sanchez, I., Seillan-Heberden, C., Suschetet, M., and Martel, P. (1994) Carcinogenesis 15, 2325–2330
6.Kuo, M. L., and Yang, N. C. (1995) Biochem. Biophys. Res. Commun. 212, 767–775
7.Birt, D. F., Shull, J. S., and Yaktine, A. L. (1998) Chemoprevention of cancer Shils, M. E., Olson, J. A., Shike, M. and Ross, A. C. (eds). Baltimore: Williams & Wilkins. pp. 1263–1295
8.Duthie, G., and Crozier, A. (2000) Curr. Opin. Clin. Nutr. Metab. Care 3, 447–451
9.Wang, C., and Kurzer, M. S. (1997) Nutr. Cancer 28, 236–247
10.Yin, F., Giuliano, A. E., Law, R. E., and Van Herle, A. J. (2001) Anticancer Res. 21, 413–420
11.Wang, W., Heideman, L., Chung, C. S., Pelling, J. C., Koehler, K. J., and Birt, D. F. (2000) Mol. Carcinog. 28, 102–110
12.Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F. O., Natali, P. G., Brunetti, M., Aiello, F. B., and Piantelli, M. (2000) Int. J. Cancer 87, 595–600
13.Yin, F., Giuliano, A. E., and Van Herle, A. J. (1999) Thyroid 9, 369–376
14.Wang, I. K., Lin-Shiau, S. Y., and Lin, J. K. (1999) Eur. J. Cancer 35, 1517–1525
15.Sanjay, G., Farrukh, A., and Hasan ,M. (2002) Oncogene 21, 3727–3738
16.Geahlen, R. L., Koonchanok, N. M., and McLaughlin, J. L. (1989) J. Nat. Prod. 52, 982–986
17.Huang, Y. T., Kuo, M. L., Liu, J. Y., Huang, S. Y., and Lin, J. K. (1996) Eur. J. Cancer 32A, 146–151
18.Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., and McGuire, W. L. (1987) Science 235, 177–182
19.T.C. Wang, R.D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, E.V. Schmidt, Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice, Nature (Lond.) 369 (1994) 669–671.
20.Slamon, D., Clark, M., Wong, S., Levin, W., Ullrich, A., and McAuire, W. (1987) Science 235, 177–181
21.Menard, S., Tagliabue, E., Campiglio, M., and Pupa, S. M., (2000) J. Cell Physiol. 182, 150–162
22.Yu, D. H., and Hung, M. C. (1991). Oncogene 6, 1991–1996
23.Yu, D. H., Wang, S. S., Dulski, K. M., Nicolson, G. L., and Hung, M. C. (1994) Cancer Res. 54, 3150– 3156
24.Yusa, K., Sugimot, Y., Yamori, T., Yamamoto, T., Toyoshima, K., and Tsuruo, T. (1990) J. Natl. Cancer Inst. 82, 1632–1635
25.Xing, X., Matin, A., Yu, D., Xia, W., Sorgi, F., Huang, L., and Hung, M. C. (1996) Cancer Gene Ther. 3, 168–174
26. Yu, D., Matin, A., Xia, W., Sorgi, F., Huang, L., and Hung, M. C. (1995) Oncogene 11, 1383–1388
27.Zhang, Y., Yu, D., Xia, W., and Hung, M. C. (1995) Oncogene 10, 1947–1954
28.Drebin, J. A., Link, V. C., Weinberg, R. A., and Greene, M. I. (1986) Proc. Natl. Acad. Sci. USA 83, 9129–9133
29.Drebin, J. A., Link, V. C., and Greene, M. I. (1988) Oncogene 2, 273–277
30.Katsumata, M., Okudaira, T., Samanta, A., Clark, D. P., Drebin, J. A., Jolicoeur, P., and Greene, M. I. (1995) Nat. Med. 1, 644–648
31.Park, J. W., Hong, K., Carter, P., Asgari, H., Guo, L. Y., Keller, G. A., Wirth, C., Shalaby, R., Kotts, C., Wood, W. I., Papahadjopoulos, D., and Benz, C. C. (1995) Proc. Natl. Acad. Sci. USA 92, 1327–1331
32.Pegram, M., and Slamon, D. (2000) Semin. Oncol. 27, 13–19
33.Kasprzyk, P.G., Song, S.U., Di Fiore, P.P., and King, C.R. (1992) Cancer Res. 52, 2771–2776
34.Olayioye, M. A., Neve, R. M., Lane, H. A., and Hynes, N.E. (2000) EMBO J. 19, 3159–3167
35.Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, Seger R, Hynes NE and Yarden Y. (1996). EMBO J. 15, 254 – 264.
36.Fedi, P., Pierce, J. H., di Fiore, P. P., and Kraus, M. H. (1994) Mol. Cell. Biol. 14, 492–500
37.Prigent, S. A., and Gullick, W. J. (1994) EMBO J. 13, 2831–2841
38.Duronio, V., Scheid, M. P., and Ettinger, S. (1998) Cell Signal. 10, 233–239
39.Hellyer, N. J., Kim, M. S., and Koland, J. G. (2001) J. Biol. Chem. 276, 42153–61
40.Lane, H. A., Beuvink, I., Motoyama, A. B., Daly, J. M., Neve, R. M., and Hynes, N. E. (2000) Mol. Cell. Biol. 20 3210–3223
41.Carlson, B., Lahusen, T., Singh, S., Loaiza-Perez, A., Worland, P. J., Pestell, R., Albanese, C., Sausville, E. A., and Senderowicz, A. M. (1999) Cancer Res. 59 4634–4641
42.Li, Y., Bhuiyan, M., Alhasan, S., Senderowicz, A. M., and Sarkar, F. H. (2000) Clin. Cancer Res. 6 223–229
43.Yu, Q., Geng, Y., and Sicinski, P. (2001) Nature 411 1017–1021
44.Downward, J. (1998) Science 279, 673–674
45.Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997) Cell 91, 231–241
46.Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Frank, T. F., Stanbridge, E., Frisch, S., and Reed, J. C. (1998) Science 282, 1318–1321
47.Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. (1999) Cell 96, 857–68
48.Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., and Donner, D.B. (1999) Nature 401, 82–85
49.Romashkova, J. A., and Makarov, S. S. (1999) Nature 401, 86–90
50.Ahmed, N. N., Grimes, H. L., Bellacosa, A., Chan, T. O., and Tsichlis, P. N. (1997) Proc. Natl. Acad. Sci. USA 94, 3627–3632
51.Medema, R. H., Kops, G. J., Bos, J. L., and Burgering, B. M. (2000) Nature 404, 782–787
52.Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Br. J. Cancer 26 239–257
53.Yang, J., Liu, X., and Bhalla, K. (1997) Science 275 1129–1132
54.Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997) Science 275 1132–1136
55.Hofmann, K., Bucher, P., and Tschopp, J. (1997) Trends. Biochem. Sci. 22 155–156
56.Li, P., Nijhawan, D., and Budihardjo, I. (1997) Cell 91 479–489
57.Kim, R., Tanabe, K., Uchida, Y., Emi, M., Inoue, H., and Toge, T. (2002) Cancer Chemother. Pharmacol. 50 343–352
58.Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997) Cell 89 175–184
59.Enari, E., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998) Nature 391 43–50
60.Sakahira, H., Masato, H., and Nagata, S. (1998) Nature 391 96–99
61.Yokota, J., Yamamoto, T., Toyoshima, K., Terada, M., Sugimura, T., Battifora, H., and Cline, M. J. (1986) Lancet 1, 765–767
62.Agullo, G., Gamet-Payrastre, L., Manenti, S., Viala, C., Remesy, C., Chap, H., and Payrastre, B. (1997) Biochem. Pharmacol. 53, 1649–57
63.Marte, B. M., and Downward, J. (1997) Trends. Biochem. Sci. 22, 355–358
64.Vanhaesebroeck, B., and Alessi, D. R. (2000) Biochem. J. 346, 561–576
65.Franke, T. F., Yang, S. I., Chan, T. O., Datta, K., Kazlauskas, A., Morrison, D. K., Kaplan, D. R., and Tsichlis, P. N. (1995) Cell 81, 727–36
66.Alessi, D. R., James, S. R., Downes, C. P., Holmes, A. B., Gaffney,P. R., Reese, C. B., and Cohen, P. (1997) Curr. Biol. 7, 261–269
67.Wallasch, C., Weiss, F. U., Niederfellner, G., Jallal, B., Issing, W., and Ullrich, A. (1995) EMBO J, 14, 4267–4275
68.Hellyer, N. J., Cheng, K., and Koland, J. G. (1998) Biochem. J. 333, 757–63
69. Mimnaugh, E. G., Chavany, C., and Neckers, L. (1996) J. Biol. Chem. 271, 22796–22801
70.Li, Z., and Srivastava, P. K. (1993) EMBO J. 12, 3143–3151
71.Testa, J. R., and Bellacosa, A. (2001) Proc. Natl. Acad. Sci. USA 98 10983–10985
72.Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N., and Rosen, N. (1998) J. Biol. Chem. 273 29864–29872
73.Diehl, J. A., Cheng, M., Roussel, M. F., and Sherr, C. (1998) J. Genes Dev. 12 3499–3511
74.Brennan, P., Babbage, J. W., Burgering, B. M., Groner, B., Reif, K., and Cantrell, D. A. (1997) Immunity 7 679–689
75.Ahmed, N. N., Grimes, H. L., Bellacosa, A., Chan, T. O., and Tsichlis, P. N. (1997) Proc. Natl. Acad. Sci. USA 94 3627–3632
76.Hermanto, U., Zong, C. S., and Wang, L. H. (2001) Oncogene 20 7551–7562
77.Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itho, N., Masabumi, S., and Fukami, Y. (1987) J. Biol. Chem. 262 5592–5595
78.Lindenmeyer, F., Li, H., Menashi, S., Soria, C., and Lu, H. (2001) Nutri. Cancer 39, 139–147
79.Page, C., Lin, H. J., Jin, Y., Castle, V. P., Nunez, G., Huang, M., and Lin, J. (2000) Anticancer Res. 20, 407–416
80.Nakashio, A., Fujita, N., Rokudai, S., Sato, S., and Tsuruo, T. (2000) Cancer Res. 60, 5303–5309
81.Vivanco, I., and Sawyers, C. L. (2002) Nat. Rev. Cancer 2, 489–501
82.Lemoine, N. R., Barnes, D. M., Hollywood, D. P., Hughes, C. M., Smith, P., Dublin, E., Prigent, S. A., Gullick, W. J. and Hurst, H. C. (1992) Br. J. Cancer 66, 1116–1121
83.Rajkumar, T., Stamp, G. W. H., Pandha, H. S., Waxman, J. and Gullick, W. J. (1996) J. Pathol. 179, 381–385
84.Bodey, B., Bodey, B., Jr, Groger, A. M., Luck, J. V., Siegel, S. E., Taylor, C. R. and Kaiser, H. E. (1997) Anticancer Res. 17, 1319–1330
85.Siegel, P. M., Ryan, E. D., Cardiff, R. D. and Muller, W. (1999) EMBO J. 18, 2149–2164
86.Alimandi, M., Romano, A., Curia, M. C., Muraro, R., Fedi, P., Aaronson, S. A., Di Fiore, P. P. and Kraus, M. H. (1995) Oncogene 10, 1813–1821
87.Neve, R. M., Sutterluty, H., Pullen, N., Lane, H. A., Daly, J. M., Krek, W., and Hynes, N. E. (2000) Oncogene 19, 1647–1656
88.Lin, J. K., Chen, Y. C., Huang, Y. T., Lin-Shiau, S. Y. (1997) J. Cell Biochem. Suppl 28/29, 39–48
89.Hong, R. L., Spohn, W. H., and Hung, M. C. (1999) Clin. Cancer Res. 5, 1884–1891
90.Zhang, L., Chang, C. J., Bacus, S. S., and Hung, M. C. (1995) Cancer Res. 55, 3890–3896
91.Levitzki, A. (1992) FASEB J. 6, 3275–3282
92.Levitzki, A., and Gazit, A. (1995) Science 267, 1782–1788
93.Chavany, C., Mimnaugh, E., Miller, P., Bitton, R., Nguyen, P., Trepel, J., Whitesell, L., Schnur, R., Moyer, J., and Neckers, L. (1996) J. Biol. Chem. 271, 4974–4977
94.Xu, W., Mimnaugh, E., Rosser, M. F., Nicchitta, C., Marcu, M., Yarden, Y., and Neckers, L. (2001) J. Biol. Chem. 276, 3702–3708
95.Diehl, J. A., Cheng, M., Roussel, M. F., and Sherr, C. J. (1998) Genes Dev. 12, 3499–3511
96.Lane, H. A., Beuvink, I., Motoyama, A. B., Daly, J. M., Neve, R. M., and Hynes, N. E. (2000) Mol. Cell. Biol. 20, 3210–3223
97.Carlson, B., Lahusen, T., Singh, S., Loaiza-Perez, A., Worland, P. J., Pestell, R., Albanese, C., Sausville, E. A., and Senderowicz, A. M. (1999) Cancer Res. 59, 4634–4641
98.Ferriola, P. C., Cody, V., and Middleton, E. (1989) Biochem. Pharmacol. 38 1617–1624
99.Geahlen, R. L., Koonchanok, N. M., McLaughlin, J. L., and Pratt, D. E. (1989) J. Natl. Products 52 982–986
100.Cushman, M., Nagarathnam, D., Burg, D. L., and Geahlen, R. L., (1991) J. Med. Chem. 34 798–806
101.Agullo, G., Gamet-Payrastre, L., Manenti, S., Viala, C., Remesy, C., Chap, H., and Payrastre, B. (1997) Biochem. Pharmacol. 53 1649–1657
102.Jing, Y., and Waxman, S. (1995) Anticancer Res. 15 1147–1152
103.Wang, I. K., Lin-Shiau, S. Y., Lin, J. K., (1999) Eur. J. Cancer 35 1517–1525
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊