跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄔德傳
研究生(外文):Deh-Juan Wu
論文名稱:三維裂縫之Jk積分與應力強度因子之數值計算
論文名稱(外文):Finite element calculation of Jk integrals and mixed-mode stress intensity factors for arbitrary 2D and 3D crack under quasi-static and dynamic loading
指導教授:張瑞宏張瑞宏引用關係
指導教授(外文):Jui-Hung Chang
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:191
中文關鍵詞:Jk積分應力強度因子有限元素法奇異性奇異元素
外文關鍵詞:singularitysingular elementsJk integralsstress intensity factorsfinite element method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
Jk積分與應力強度因子是研究具裂縫物體之破壞行為的重要參數,因此研究重點為針對不同材料與具有不同裂縫形狀之物體,計算其Jk積分與應力強度因子。首先依序針對具任意曲線形狀之二維裂縫問題以及具任意曲面形狀之三維裂縫問題,進行Jk積分式之理論推導。其中J2積分,因裂縫尖端附近的應力場具有奇異性,造成裂縫尖端附近區域之有限元素網格的形式對J2積分的計算影響很大,在數值計算上往往不能得到準確值,因此J2積分值的計算顯得非常困難。本文提出一解決此問題的簡易方法,在裂縫尖端附近不需使用奇異元素或是複雜的網格,即可求得準確的J2值,且分別對等向性線彈性材料與非等向性線彈性材料進行數值分析。
研究中,對於等向性材料之具裂縫物體,由於應力強度因子與Jk積分具有一簡易關係式,故應力強度因子可藉由數值分析所得之Jk積分值直接求得。對於非等向性材料之具裂縫物體,應力強度因子與J1積分亦具有一關係式,但J2積分尚無相關文獻之探討;因此,本文先針對J2積分推導其與應力強度因子之關係式,再利用此二關係式與數值分析所得之Jk積分值求得應力強度因子。
此外,當具固定裂縫物體在承受動態載重作用之下,可由動態之Jk積分求得隨時間變化之應力強度因子,進而計算出動態載重作用下之應力強度因子與擬靜態因子之放大因數。
ABSTRACT
A method based on the Jk integrals for arbitrary 2-D curve and 3-D surface crack problems is presented in this research. Due to stress singularity around the crack tip, the finite element meshes near crack tip will affect the J2 numerical value and it is difficult to accurately calculate this value. A simple and convenient approach is developed to obtain the accurate J2 value without using singular elements or complicated meshes. Both isotropic and anisotropic linear elastic materials are considered in this thesis. For isotropic materials, there exists a relationship between the stress intensity factors and Jk integrals. Accordingly, the stress intensity factors can be calculated by using the equations and the Jk values obtained from numerical analysis. For anisotropic materials, specific J1 integral has a relationship with the stress intensity factors. Nevertheless, there were no studies on J2 integral. In this research, an equation which describes the relation between J2 integral and the stress intensity factors is derived. Accordingly, the stress intensity factors can be obtained by the equations and the Jk values obtained from numerical analysis.
Moreover, for the cases of a stationary crack under dynamic loading, one can get the elastodynamic stress intensity factors varying with time by the Jk values obtained from numerical analysis. Accordingly, the amplification factor which is a ratio of the elastodynamic stress intensity factors and the quasi-static stress intensity factors can be obtained.
目 錄
摘 要 I
ABSTRACT III
誌 謝 V
目 錄 VII
圖 目 錄 XI
表 目 錄 XIX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文內容 6
第二章 理論分析與推導 9
2.1 前言 9
2.2 區域積分法 10
2.2.1 二維問題之Jk積分與區域積分法 10
2.2.2 三維問題之Jk積分與區域積分法 12
2.3 均質材料的J2積分計算 17
2.3.1 二維問題之等向性材料的J2積分計算 17
2.3.2 二維問題之非等向性材料的J2積分計算 20
2.3.3 三維問題之等向性材料的J2積分計算 23
2.4 均質非等向性材料的Jk積分與應力強度因子之關係 26
第三章 等向性材料與非等向性材料之應力強度因子計算 31
3.1 前言 31
3.2 等向性材料 32
3.2.1 圓弧形裂縫 33
3.2.2 拋物線形裂縫 38
3.3 非等向性材料 43
3.3.1 圓弧形裂縫 44
3.3.2 拋物線形裂縫 51
第四章 三維曲裂縫之Jk積分值與應力強度因子計算 61
4.1 前言 61
4.2 圓盤形裂縫位於圓柱體內部中央處 61
4.3 空間斜圓盤形裂縫於圓柱體內部中央處 62
4.4 球形裂縫 66
4.5 曲面形裂縫 69
第五章 動態反應下三維曲裂縫之Jk積分值計算 73
5.1 前言 73
5.2 球形裂縫 77
5.3 曲面形裂縫 78
第六章 結論與建議 81
6.1 結論 81
6.2 建議 83
參考文獻 85
附錄(I) 守恆定律與Jk積分具有廣義的與積分路徑無關的性質之證明 93
附錄(II) 座標轉換之材料柔度矩陣 95
附圖 99
附表 170
參考文獻
Abe, H., Hayashi, K., and Kiko, M., “Stress intensity factors for a cylindrically curved elliptical crack,” Transactions of the Japan Society of Mechanical Engineers, Vol. 50, No. 455, pp. 1367-1375 (1984).
Atkinson, C., and Eshelby, J.D., “The flow of energy into the tip of a moving crack,” International Journal of Fracture, Vol. 4, pp. 3-8 (1968).
Atlur, S.N., and Nishioka, T., “Incremental path-independent integrals in inelastic and dynamic fracture mechanics,” Engineering Fracture Mechanics, Vol. 20, No. 2, pp. 209-244 (1984).
Azhdari, A., Obata, M., and Nasser, S.N., “Alternative solution methods for crack problems in plane anisotropic elasticity, with examples,” International Journal of Solid and Structures, Vol. 37, pp. 6433-6478 (2000).
Barsoum, R.S., “On the use of isoparametric finite elements in linear fracture mechanics,” International Journal for Numerical Methods in Engineering, Vol. 10, pp. 25-37 (1976).
Bhattacharya, A., “Crack tip rotation and shear strain on crack edge of mode II crack in anisotropic plate,” Engineering Fracture Mechanics, Vol. 51, No. 6, pp. 987-995 (1995).
Budiansky, B., and Rice, J.R., “Conservation laws and energy release rate,” Journal of Applied Mechanics, ASME, Vol. 40, pp. 201-203 (1973).
Chang, J.H., “Calculation of energy release rate for rubbery material problems with fe solutions,” The Chinese Journal of Mechanics, Vol. 10, No.3, pp. 201-210 (1994).
Chang, J.H., “On the calculation of energy release rate for curved cracks of rubbery materials,” Finite Elements in Analysis and Design, Vol. 17, pp. 323-338 (1994).
Chang, J.H., and Chen, C.B., “Calculation of the elastodynamics energy parameter for a plane crack prior to kinking,” Journal of Engineering Mechanics, ASCE, Vol. 124, No. 3, pp. 268-276 (1998).
Chang, J.H., and Kang, L.K., “Evaluation of the stress field around a notch tip using contour integrals,” International Journal of Engineering Science, Vol. 40, pp. 569-586 (2002).
Chang, J.H., and Tsai, W.H., “Post-processing calculation of surface traction along material interfaces,” The Chinese Journal of Mechanics, Vol. 13, No. 1, pp. 107-112 (1997).
Chang, J.H., and Wu, D.J., “Calculation of mixed-mode stress intensity factors for a crack normal to a bimaterial interface using contour integrals,” Engineering Fracture Mechanics, Vol. 70, pp. 1675-1695 (2003).
Chang, J.H., and Wu, D.J., “Finite element calculation of elastodynamic stress field around a notch tip via contour integrals,” International Journal of Solid and Structures, Vol. 40, pp. 1189-1202 (2003).
Chen, Y.Z., “General solution for arc crack problem in thermoelastic medium,” International Journal of Engineering Science, Vol. 40, pp. 2223-2234 (2002).
Chen, Y.Z., “Singular integral equation method for the solution of multiple curved crack problems,” International Journal of Solid and Structures, Vol. 41, pp. 3505-3519 (2004).
Chen, Y.Z., “Solution of integral equation in curve crack problem by using curve length coordinate,” Engineering Analysis with Boundary Element, Vol. 28, pp. 989-994 (2004).
Chen, Y.Z., “Stress intensity factors for curved and kinked cracks in plane extension,” Theoretical and Applied Fracture Mechanics, Vol. 21, pp. 223-232 (1999).
Cherepanov, G.P., Mechanics of Brittle Fracture, McGraw-Hill, New York (1979).
Cho, S.B., Lee, K.R., and Choy, Y.S., “A fracture study of two-dimensional boundary element crack analysis in anisotropic or orthotropic materials,” Engineering Fracture Mechanics, Vol. 43, pp. 589-601 (1992).
Cotterell, B., and Rice, J.R., “Slightly curved or kinked cracks,” International Journal of Fracture, Vol. 16, No. 2, pp. 155-169 (1980).
deLorenzi, H.G., “Energy release rate calculations by the finite element method,” Engineering Fracture Mechanics, Vol. 21, pp.129-143 (1985).
deLorenzi, H.G., “On the energy release rate and the J-integral for 3-D crack configurations,” International Journal of Fracture, Vol. 19, pp. 183-193 (1982).
Doblare, M., Espiga, F., Gracia, L., and Alcantud, M., “Study of crack propagation in orthotropic materials by using the boundary element method,” Engineering Fracture Mechanics, Vol. 37, pp. 953-967 (1990).
Eftis, J., Subramonian, N., and Liebowitz, H., “Crack border stress and displacement equations revisited,” Engineering Fracture Mechanics, Vol. 9, pp. 189-210 (1977).
Eischen, J.W., “An improved method for computing the J2 integral,” Engineering Fracture Mechanics, Vol. 26, pp. 691-700 (1987).
Erdogan, F., and Sih, G.C., “On the crack extension in plates under plane loading and transverse shear,” Journal of Basic Engineering, ASME, Vol. 85, pp. 519-527 (1963)
Eriksson, K., “A domain independent integral expression for the crack extension force of a curved crack in three dimensions,” Journal of the Mechanics and Physics of Solids, Vol. 50, pp. 381-403 (2002).
Eriksson, K., “A domain independent integral expression for the crack extension force of a curved crack in three dimensions,” Journal of the Mechanics and Physics of Solids, Vol. 50, pp. 381-403 (2002).
Forth, S.C., and Keat, W.D., “Three-dimensional nonplanar fracture model using the surface integral method,” International Journal of Fracture, Vol. 77, pp. 243-262 (1996).
Freund, L.B., “Energy flux into the tip of an extending crack in an elastic solid,” Journal of Elasticity, Vol. 2, pp. 341-349 (1972).
Gol’dstein, R.V., and Salganik, R.L., “Brittle fracture of solids with arbitrary cracks,” International Journal of Fracture, Vol. 10, No. 4, pp. 507-523 (1974).
Gosz, M., “Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks,” International Journal of Solid and Structures, Vol. 35, No. 15, pp. 1763-1783 (1998).
Gosz, M., and Moran, B., “An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions,” Engineering Fracture Mechanics, Vol. 69, pp. 299-319 (2002).
Gray, L.J., Phan, A.V., Paulino, G.H., and Kaplan, T., “Improved quarter-point crack tip element,” Engineering Fracture Mechanics, Vol. 70, pp. 269-283 (2003).
Gurtin, M.E., “On the energy release rate in quasi-static elastic crack propagation,” Journal of Elasticity, Vol. 9, pp. 187-196 (1979).
Han, J.J., and Dhanasekar, M., “Modelling cracks in arbitrarily shaped finite bodies by distribution of dislocation,” International Journal of Solid and Structures, Vol. 41, pp. 399-411 (2004).
Hartranft, R.J., and Sih, G.C., “Stress singularity for a crack with an arbitrary curved crack front,” Engineering Fracture Mechanics, Vol. 9, pp. 705-718 (1977).
Hartranft, R.J., and Sih, G.C., “The use of eigenfunction expansions in the general solution of three-dimensional crack problems,” Journal of Mathematics and Mechanics, Vol. 19, pp. 123-138 (1977).
Hellen, T.K., and Blackburn, W.S., “The calculation of stress intensity factors for combined tensile and shear loading,” International Journal of Fracture, Vol. 11, pp. 605-617 (1975).
Henshell, R.D, and Shaw, K.G., “Crack tip finite elements are unnecessary,” International Journal for Numerical Methods in Engineering, Vol. 9, pp. 495-507 (1975).
Heo, S.P., and Yang, W.H., “Approximate weight function method for elliptical are through cracks in mechanical joints,” Engineering Fracture Mechanics, Vol. 70, pp. 1171-1192 (2003).
Herrmann, A.G., and Herrmann, G., “On energy-release rate for a plane crack,” Journal of Applied Mechanics, ASME, Vol. 48, pp. 525-528 (1981).
Hwang, C.G., Wawrzynek, P.A., and Ingraffea, A.R., “On the virtual crack extension method for calculating the derivatives of energy release rates for a 3D planar crack of arbitrary shape under mode-I loading,” Engineering Fracture Mechanics, Vol. 68, pp. 925-947 (2001).
Ju, S.H., “Simulating stress intensity factors by the least-squares method,” Forum on Advanced Engineering Computations, National Central University, Jhongli (2000).
Lekhnitskii, S.G., Theory of elasticity of an anisotropic elastic body, Holden-Day Inc, San Francisco (1963).
Li, F.Z., Shih, C.F., and Needleman, A., “A comparison of methods for calculating energy release rates,” Engineering Fracture Mechanics, Vol. 21, No. 2, pp. 405-421 (1985).
Lim, W.K., Choi, S.Y., and Sankar, B.V., “Biaxial load effects on crack extension in anisotropic solids,” Engineering Fracture Mechanics, Vol. 68, pp. 403-416 (2001).
Lorentzon, M., and Eriksson, K., “A path independent integral for the crack extension force of the circular arc crack,” Engineering Fracture Mechanics, Vol. 66, pp. 423-439 (2000).
Moran, B., and Shih, C.F., “A general treatment of crack tip contour integrals,” International Journal of Fracture, Vol. 35, pp. 295-310 (1987).
Nikishkov, G.P., and Atluri, S.N., “Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the ‘equivalent domain integral’ method,” International Journal for Numerical Methods in Engineering, Vol. 24, pp. 1801-1821 (1987).
Noda, N.A., and Kagita, M., “Variations of stress intensity factors of a semi-elliptical surface crack subjected to mode I, II, III loading,” International Journal of Pressure Vessels and Piping, Vol. 81, pp. 635-644 (2004).
Obata, M., Nemat-Nasser, S., and Goto, Y., “Branched cracks in anisotropic elastic solids,” Journal of Applied Mechanics, ASME, Vol. 56, pp. 858-864 (1989).
Park, D.M., “A stiffness derivative finite element technique for determination of crack tip stress intensity factors,” International Journal of Fracture, Vol. 10, pp. 487-502 (1974).
Raju, I.S., and Shivakumar, K.N., “An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems,” Engineering Fracture Mechanics, Vol. 37, No. 4, pp. 707-725 (1990).
Rice, J.R., “A path independent integral and the approximate analysis of strain concentration by notches and cracks,” Journal of Applied Mechanics, ASME, Vol. 35, pp. 379-386 (1968).
Savin, G.N., Stress concentration around holes, Pergamon Press, Oxford (1961).
Shenjie, Z., Shuxun, S., and Zhiyuan C., “The dual boundary contour method for two-dimensional crack problems,” International Journal of Solid and Structures, Vol. 92, pp. 201-212 (1998).
Shih, C.F., Moran, B., and Nakamura, T., “Energy release rate along a three dimensional crack front in a thermally stressed body,” International Journal of Fracture, Vol. 30, pp. 79-102 (1986).
Shivakumar, K.N., “An equivalent domain integral method for three-dimensional mixed-mode fracture problems,” Engineering Fracture Mechanics, Vol. 42, pp. 935-959 (1992).
Sih, C.G., Handbook of stress intensity factors, Institute of fracture and solid mechanics, Lehigh University, Bethlehem, Pa., U.S.A (1973).
Sih, G.C., Paris, P.C., and Irwin, G.R., “On cracks in rectilinearly anisotropic bodies,” International Journal of Fracture, Vol. 1, pp. 245-269 (1965).
Sills, L.B., “A conservative integral for determining stress intensity factors of a bimaterial strip,” International Journal of Fracture, Vol. 86, pp. 385-398 (1997).
Sladek, V., and Sladek, J., “Three-dimensional curved crack in an elastic body,” International Journal of Solid and Structures, Vol. 19, No. 5, pp. 425-436 (1983).
Van, A.L., and Royer, J., “A numerical procedure for regularized integral equations for elastostatic problems of flat cracks in opening mode,” Engineering Fracture Mechanics, Vol. 40, No. 2, pp. 237-250 (1991).
Vijayakumar, K., and Atluri, S.N., “An embedded elliptical crack, in an infinite solid, subject to arbitrary crack-face tractions,” Journal of Applied Mechanics, ASME, Vol. 48, pp. 88-96 (1981).
Xu, Y.L., “A concentric arc crack in a circular disk,” International Journal of Solid and Structures, Vol. 32, No. 14, pp. 2023-2040 (1995).
卜麗蘋,「組合載重下Jk積分的數值計算」,碩士論文,國立中央大學土木工程研究所,中壢(1995)。
葉俊彬,「應用Jk積分於均質與非均質材料在裂縫延伸時之能量釋放計算」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
陳哲彬,「複合材料垂直於介面上裂縫之Jk積分計算」,碩士論文,國立中央大學土木工程研究所,中壢(1997)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top