# 臺灣博碩士論文加值系統

(44.222.218.145) 您好！臺灣時間：2024/03/04 16:36

:::

### 詳目顯示

:

• 被引用:0
• 點閱:159
• 評分:
• 下載:7
• 書目收藏:0
 平均值函數（mean functions）在多維分析上的檢定是很重要的一部份，以變異數分析．共變異數分析和迴歸分析作為應用的基礎,有關這個問題的檢定在隨機過程的資料中是比較少被研究．　在這篇論文中，我們將討論布朗運動之線性和二次動向函數的同值檢定．
 Testing equality of mean functions is important in multivariate analysis.The application can be found in analysis of variance,analysis of covariance and regression.However,this testing problem is relatively less explored for stochastic processes datum.In this paper,we present homogeneous tests for linear quadratic drift functions of Brownian motions.
 Contents1.Introduction.....................................................12.Homogeneous Tests for Linear Mean functions......................3 2.1 Homogeneous Tests for Two Parameters........................6 2.2 Homogeneous Tests for Intercepts...........................22 2.3 Homogeneous Tests for Slopes...............................313.Homogeneous Tests for Quadratic Mean functions..................40 3.1 Homogeneous Tests for Three Parameters.....................44 3.2 Homogeneous Tests for a and b..............................64 3.3 Homogeneous Tests for b and r..............................77 3.4 Homogeneous Tests for a and r..............................90 3.5 Homogeneous Tests for a...................................103 3.6 Homogeneous Tests for b...................................116 3.7 Homogeneous Tests for r...................................1294.Conclusion.....................................................142.Reference.......................................................147
 [1] Andersen, P. K. Borgan, O. Gill, R.D. and Keiding, N.(1993). Statistical Methodson Counting Processes. Springer-Velag.[2] Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis. 2nded. Wiley.[3] Bosq, D.(1998). Nonparametric Statistic Stochastic Process. 2nd. ed., LectureNotes in Statistics 110. Springer.[4] Basawa, I.V. and Prabhu, N.U. (1994). Statistical Inference in Stochastic Pro-cesses. Special issue of Journal of Statistical Planning and Inference, 39.[5] Breslow, N. E. (1970). A Generalized Kruskal-Wallis Test for Comparing K Sam-ples Subject to Unequal Patterns of Censorship. Biometrika 57 ,579-594.[6] Basawa, I.V. and Prakasa Rao, B.L.S. (1980). Statistical Inference for StochasticProcesses, Academic Press, London.[7] Billingsley, P. (1961). Statistical Inference for Markov Processes. University ofChicago Press, Chicago.[8] Beran, J. (1994). Statistical Methods for Long Memory Processes. Chapman andHall, London .[9] Cox, D. R. and Lewis, P. A. W. (1978). The Statistical Analysis of Series ofEvents. Chapman and Hall.[10] Delgado, M.A. (1993). Testing the Equality of Nonparametric Regression Curves.Statist. Probab. Lett.,17, 199-204.[11] Dette, H. and Munk, A. (1998). Nonparametric Comparison of Several RegressionFunctions: Exact and Asymptotic Theory. Ann. Statist.,26, 2339-2368.[12] Dette H. and Neumeyer N. (2001). Nonparametric Analysis of Covariance. Ruhr-UniversitÄat Bochum. Ann. Statist. Vol. 29, No. 5, 1361-1400.[13] Fleming, T. R. and Harrington, D. P.(1991). Counting Processes and SurvivalAnalysis. Wiley.[14] Guttorp, P.(1991). Statistical Inference for Branching Processes. Wiley.[15] Gehan, E. A. (1965). A Generalized Wilcoxon Test for Comparing ArbitrarilySingly Censored Samples. Biometrika 52 ,203-223.[16] Grenander, U. (1981). Abstract Inference. Wiley.[17] HÄardle, W. and Marron, J.S. (1990). Semiparametric Comparison of RegressionCurves. Ann. Statist.,18, 63-89.[18] Hogg, R. V. and Craig, A. T. (1995). Introduction to Mathematical Statistics.5nd ed., Prentice Hall.[19] Klein J. P. and Moeschberger M. L. (1997). Survival Analysis. Medical Collegeof Wisconsin and The Ohio State University Medical Center.[20] Kutoyants, Yu.A. (1984). Parameter Estimation for Stochastic Processes (trans.and ed. B.L.S. Prakasa Rao), Heldermann, Berlin.[21] Kutoyant, Y.A. (2004). Statistical Inference for Ergodic Di®usion Processes.Spriner.[22] King, E.C., Hart, J.D. and Wehrly, T.E. (1991). Testing the Equality of Regres-sion Curves Using Liner Smoothers. Statist. Probab. Lett.,12, 239-247.[23] Karr, A. F. (1991). Point Processes and their Statistical Inference. MarcelDekker, New York.[24] Prakasa Rao, B.L.S. (1999a). Statistical Inference for Di®usion Type Process.Arnold.[25] Prakasa Rao, B.L.S. (1999b). Semimartingales and their Statistical Inference.Chapman and Hall.[26] Prakasa Rao, B.L.S. and Bhat, B.R. (1996). Stochastic Processes and StatisticalInference. New Age International, New Delhi.[27] Prabhu, N. U., ed. (1988). Statistical Inference from Stochastic Processes. (Con-temporary Mathematics, Vol. 80 ). American Mathematical Society, Providence,RI.[28] Prabhu, N. U. and Basawa, I. V. (1991). Statistic Inference in Stochastic Pro-cesses. Marcel Dekker, New York.[29] Su, S.T. (2004). ANOVA for Constant Means of Brownian motions and PoissonProcesses. Master Thesis, National Central University.[30] Shorack, G. and Wellner, J. A. (1986). Empirical Processes with Applications toStatistics. Wiley.[31] Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Infer-ence for Time Series. Springer.[32] Tarone, R. E. and Ware, J. H. (1977). On Distribution-Free Tests for Equalityfor Survival Distributions. Biometrika ,64,156-160.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 4. 孫路弘（民85），「餐飲服務品質管理」，觀光研究學報，第二卷，第一期，pp.79-91. 2 3. 鍾秀敏（民87），『邁向二千年餐飲服務業的品質管理』，品質管制月刊，34 卷，10 期。 3 2. 陳正男，丁學勤（民90）。融入技術服務、功能服務於顧客滿意度模式之研究，交大管理學報，pp.78-104。

 1 體驗式教學訓練成效之因素探討 2 高滲透性含水層微水實驗壓力反應之分析 3 組織創業精神及創新與組織績效關係之研究 4 佈植碳離子於氮化鎵/氮化銦鎵多重量子井發光二極體之特性研究 5 微放電製作之微軸強度分析及其改善方法研究 6 金屬粉末射出成型毛細吸附脫脂之實驗觀察與分析 7 兩個獨立的基本Lévy隨機過程之極值過程 8 從眼動資料探討字形與聲旁在篇章閱讀的效果 9 自動化車牌辨識系統設計 10 輪型行動機器人之自動航行與路徑規劃 11 電腦輔助文獻計量系統於系所及主題之核心期刊與論文排序之研究 12 消費者網路競標意圖研究－認知風險觀點 13 應用馬可夫鏈進行台股現貨與期貨間交易策略 14 勞工退休金制度與年金保險所得替代率之研究 15 震源破裂過程及地表強地動特性之陣列分析研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室