跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁志偉
研究生(外文):Chih-Wei Weng
論文名稱:斑馬魚肌肉調控蛋白myf5基因在體節形成期間的轉錄調控
論文名稱(外文):The Onset Transcriptional Regulatory Network of Zebrafish Myf5 Gene During Somitogenesis
指導教授:蔡懷楨蔡懷楨引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:47
中文關鍵詞:斑馬魚肌肉調控蛋白
外文關鍵詞:myf5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在很多物種內 Myf5 是最早表現的肌肉特異性轉錄因子,且其轉錄機制的調控也被爭相研究。在斑馬魚的研究中,Myf5 先在前體節中胚層(PSM)被開啟,之後持續於新生體節內表現,當體節愈趨成熟後開始下降表現。但是,Myf5 在前體節中胚層是如何被開啟的卻未有被報導過。轉錄因子 Mesp 家族,包括 mespo 和 mesp-a 也是表現於前體節中胚層或體節生成小體 (somitomeres)。在這篇文章裡,我們使用核酸類似物胚胎抑制劑 (morpholino)去抑制 mespo 或 mesp-a 的蛋白質轉譯,並觀察斑馬魚 Myf5 mRNA的表現情形。首先我們注射 mespo 的胚胎抑制劑至 Myf5:BAC:gfp 這個會忠實表現內生性myf5,並以綠螢光方式呈現之轉殖魚的胚胎內,發現 Myf5-positive 綠螢光蛋白的表現被限制在前體節中胚層處,更進一步,我們使用原位雜交法 (whole mount in situ hybridization),發現當 Mespo 蛋白質被降低後,內生性myf5 mRNA 的表現的確也被限制在尾芽(tail buds)。然而不論有無注射 mespo 的胚胎抑制劑,myoD mRNA表現都未受到影響,因此我們認為 mespo 在調控 Myf5 的轉錄表現扮演著重要的角色,當我們改注射 mesp-a 的胚胎抑制劑後,我們也觀察到同樣的結果。此外,我們也觀察到 mespo 能夠去活化 mesp-a 在體節生成小體的表現。所以當 Mespo 和 Mesp-a 的蛋白質表現都被降低時,myf5 mRNA 也會很顯著的降低。在 Mespo 蛋白質表現被降低的胚胎內,我們觀察到 her 1 和 fgf8 的 mRNA表現量也明顯的下降,所以 Mespo 蛋白質也能夠調控 her1 和 fgf8 的表現,並藉由調控 her1 和 fgf8 的表現間接的去調控體節分節過程。基於以上的觀察,我們認為 Mespo 藉由透過調控 mesp-a 及 her1 來達到其維持 myf5 在前體節中胚層的轉錄調控。
Myf5 is the first expressed muscle regulatory factor in many species and the transcription mechanism is dedicated controlled. In zebrafish, myf5 is activated in presomitic mesoderm (PSM); prolong expression at newly forming somites and down-regulation in the elder one. However, the activation mechanism of myf5 in PSM has never been reported. Mesp family, including mespo, mesp-a, are expressed in PSM or somitomere that function as transcription factors. Here, we performed morpholino (MO) knockdown experiments to examine the transcriptional effects of Mesp family on zebrafish myf5 gene. Treatment the Myf5:BAC:gfp transgenic line with mespo-MO revealed that Myf5-positive green fluorescent cells were restricted in the PSM. We furthermore using whole mount in situ hybridization to examine the expression patterns of myf5 and found that myf5 transcripts were also restricted to tail buds in mespo knockdown embryos. Compared to the wild type, myoD transcripts were unaffected, indicating that mespo played important role in regulating myf5. Similar results were observed in mesp-a knockdown embryos. Interestingly, we also found that mespo is able to activate mesp-a in somitomeres. When mespo and mesp-a were double knockdown, myf5 transcripts were down-regulated significantly. Besides, down-regulated her1 and fgf8 transcripts in mespo-morphants also showed that mespo was able to regulate her1 oscillation in anterior PSM and fgf8 expression in somites, indicating that mespo could regulate somite segmentation indirectly through regulating both her1 and fgf8. Based on these observations, we propose that transcription of myf5 on PSM is maintained by mespo through mesp-a and her1 signaling.
Abstracts --------------------------------------------------------- 4

Introduction --------------------------------------------------------- 6

Materials and Methods ------------------------------------------- 11

Results --------------------------------------------------------- 14

Discussion --------------------------------------------------------- 20

Reference -------------------------------------------------------- 26

Figures --------------------------------------------------------- 34

Appendix ---------------------------------------------------------43
Ava, E. B., Braun, T. and Clifford, J. T.* (2005). Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132, 515-528

Aoyama, H. and Asamoto, K. (1988). Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104, 15-28.

Beddington, R. A. S. and Smith, J. C. (1993). Control of vertebrate gastrulation: Inducing signals and responding genes. Curr. Opin. Genet. Dev. 3, 655–661.

Bergstrom, D. A. and Tapscott, S. J. (2001). Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family. Mol. Cell. Biol. 21, 2404-2412.

Bessho, Y., Miyoshi, G., Sakata, R. and Kageyama, R. (2001a). Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 6, 175-185.

Bessho, Y., Sakata, R., Komatsu, S., Shiota, K., Yamada, S. and Kageyama, R. (2001b). Dynamic expression and essential functions of Hes7 in somite formation. Genes Dev. 15, 2642-2647.

Borycki, A. G., Brunk, B., Tajbakhsh, S., Buckingham, M., Chiang, C. and Emerson, C. P., Jr (1999). Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126, 4053-4063.

Braun, T., Bober, E., Buschhausen-Denker, G., Kohtz, S., Grzeschik, KH. and Arnold HH. (1989a). Differential expression of myogenic determination genes in muscle cells: possible autoactivation by Myf gene products. EMBO J 8:3617-3625

Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E. and Arnold, H. H. (1989b). A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8, 701-709.

Braun, T., Bober, E., Rudnicki, M. A., Jaenisch, R. and Arnold, H. H. (1994). MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development 120, 3083-3092.

Buchberger, A., Seidl, K., Klein, C., Eberhardt, H., Arnold, H.H., (1998). cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos. Dev. Biol. 199, 201–215.

Chen, Y. H., Lee, W. C., Liu, C. F. and Tsai, H. J.* (2001). Molecular Structure, Dynamic Expression, and Promoter Analysis of Zebrafish (Danio rerio) myf-5 Gene. Genesis 29, 22-35.

Christ, B., and Ordahl, C. P. (1995). Early stages of chick somite development. Anat. Embryol. 191, 381–396.

Conlon, R.A., Reaume, A.G. and Rossant, J. (1995). Notch1 is required for the coordinate segmentation of somites. Development 121, 1533– 1545.

Cooke, J. and Zeeman, E. C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455-476.

Cossu, G., Tajbakhsh, S., and Buckingham, M. (1996). How is myogenesis initiated in the embryo? Trends Genet. 12, 218–223.

Davis, R. L., Weintraub, H. and Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000.

Dale, J. K. and Pourquié, O. (2000). A clock-work somite. BioEssays 22, 72-83.

Dornseifer, P., Takke, C. and Campos-Ortega, J. A. (1997). Overexpression of a zebrafish homologue of the Drosophila neurogenic gene Delta perturbs differentiation of primary neurons and somite development. Mech. Dev. 63, 159-171.

Durbin, L., Sordino, P., Barrios, A., Gering, M., Thisse, C., Thisse, B., Brennan, C., Green, A.,Wilson, S., and Holder, N. (2000). Anteroposterior patterning is required within segments for somite boundary formation in developing zebrafish. Development 127: 1703–1713.

Dubrulle, J., McGrew, M.J., and Pourquie´, O. (2001). FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232.

Fraidenraich, D., Iwahori, A., Rudnicki, M. and Basilico, C. (2000). Activation of fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog. Dev. Biol. 225, 392-406.

Gossler, A., and de Angelis, M. H. (1998). Somitogenesis. Curr Top Dev Biol. 1998;38:225-87.

Grass, S., Arnold, H. H. and Braun, T. (1996). Alterations in somite patterning of Myf-5-deficient mice: a possible role for FGF-4 and FGF-6. Development 122, 141-150.

Gustafsson, M.K., Pan, H., Pinney, D.F., Liu, Y., Lewandowski, A., Epstein, D.J., and Emerson Jr., C.P. (2002). Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes & Dev. 16: 114–126.

Heather, L. S., Michael, J.F., Barresi, and Stephen, H. D.* (2000). Somite development in zebrafish. Developmental Dynamics 219:287–303

Henry, C. A., Urban, M. K., Dill, K. K., Merlie, J. P., Page, M. F., Kimmel, C. B. and Amacher, S. L. (2002). Zebrafish her1 and her7 function together to refine alternating somite boundaries. Development 129, 3693-3704.

Holley, S. A., Geisler, R. and Nüsslein-Volhard, C. (2000). Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave front activity. Genes Dev. 14, 1678-1690.

Holley, S. A., Jülich, D., Rauch, G.-J., Geisler, R. and Nüsslein-Volhard, C. (2002). her1 and the Notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129, 1175-1183.

Ish-Horowicz, D., Howard, K. R., Pinchin, S. M. and Ingham, P. W. (1985) Molecular and genetic analysis of the hairy locus in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 50, 135-144.

Jouve, C., Palmeirim, I., Henrique, D., Beckers, J., Gossler, A., Ish-Horowicz, D. and Pourquié, O. (2000). Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 127, 1421-1429.

Kablar, B., Krastel, K., Ying, C., Asakura, A., Tapscott, S. J. and Rudnicki, M. A. (1997). MyoD and Myf5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124, 4729-4738.

Keynes, R. J. and Stern, C. D. (1984). Segmentation in the vertebrate nervous system. Nature 310, 786-9.

Lawson, K. A., and Pedersen, R. A. (1992). Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found. Symp. 165, 3–26.

Leimeister, C., Dale, K., Fischer, A., Klamt, B., Hrabe de Angelis, M., Radtke, F., McGrew, M. J., Pourquié, O. and Gessler, M. (2000). Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev. Biol. 227, 91-103.

Leve, C., Gajewski, M., Rohr, K. B. and Tautz, D. (2001). Homologues of c-hairy1 (her9) and lunatic fringe in zebrafish are expressed in the developing central nervous system, but not in the presomitic mesoderm. Dev. Genes Evol. 211, 493-500.

Mankoo, B. S., Collins, N. S., Ashby, P., Grigorieva, E., Pevny, L. H., Candia, A., Wright, C. V., Rigby, P. W. J. and Pachnis, V. (1999). Mox2 is a component of the genetic hierarchy controlling limb muscle development. Nature 400, 69-73.

Maroto, M. and Pourquié, O. (2001). A molecular clock involved in somite segmentation. Curr. Top. Dev. Biol. 51, 221-248.

Megeney, L. A., Kablar, B., Garrett, K., Anderson, J. A. and Rudnicki, M. A. (1996). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10, 1173-1183.
Müller, M., Weizsäcker, E. and Campos-Ortega, J. A. (1996). Expression domains of a zebrafish homolog of the Drosophila pair-rule gene hairy correspond to the primordia of alternating somites. Development 122, 2071-2078.

Oates, A. C. and Ho, R. K. (2002). Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129, 2929-2946.

Oka, C., Nakano, T., Wakeham, A., de la Pompa, J.L., Mori, C., Sakai, T., Okazaki, S., Kawaichi, M., Shiota, K., Mak, T.W., Honjo, T. (1995). Disruption of the mouse RBP-Jj gene results in early embryonic death. Development 121, 3291– 3301.

Olson, E. N., Arnold, H. H., Rigby, P. W. J. and Wold, B. J. (1996). Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1-4.

Ott, M. O., Bober, E., Lyons, G., Arnold, H. and Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111, 1097-1107.

Padmashree C.G. Rida, Nguyet Le Minh, and Yun-Jin Jiang* (2004). A Notch feeling of somite segmentation and beyond. Developmental biology 265, 2-22

Palmeirim, I., Henrique, D., Ish-Horowicz, D. and Pourquié, O. (1997). Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639-648.

Pasini, A., Henrique, D. and Wilkinson, D. G. (2001). The zebrafish Hairy/Enhancer-of-split-related gene her6 is segmentally expressed during the early development of hindbrain and somites. Mech. Dev. 100, 317-321.
Pourquie, O. (1999). Notch around the clock. Curr. Opin. Genet. Dev. 9: 559–565.

Pourquie, O. (2003). The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330.

Pownall, M.E., Gustafsson, M.K., and Emerson Jr., C.P. 2002. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell. Dev. Biol. 18: 747–783.

Rawls, A., Valdez, M. R., Zhang, W., Richardson, J., Klein, W. H. and Olson, E. N. (1998). Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125, 2349-2358.

Rodaway, A., Takeda, H., Koshida, S., Broadbent, J., Price, B., Smith, J. C., Patient, R. and Holder, N. (1999). Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126, 3067-3078.

Rudnicki, M. A., Schnegelsberg, P. N., Stead, R. H., Braun, T., Arnold, H. H. and Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351-9.

Saga, Y., (1998). Genetic rescue of segmentation defect in Mesp2-deficient mice by Mesp1 gene replacement. Mech. Dev. 75, 53–66.

Saga, Y. and Takeda, H. (2001). The making of the somite: molecular events in vertebrate segmentation. Nature Reviews 2, 835-845.

Saga, Y., Hata, N., Kobayashi, S., Magnuson, T., Seldin, M.F., (1996). Mesp1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122, 2769–2778.

Saga, Y., Hata, N., Koseki, H., Taketo, M.M., (1997). Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839.

Sawada, A., Fritz, A., Jiang, Y-J., Yamamoto, A., Yamasu, K., Kuroiwa, A., Saga, Y., Takeda, H. (2000). Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic. Development 127, 1691-702.

Sieger, D.T., Tautz, D., Gajewski, M., (2003). The role of Suppressor of Hairless in Notch mediated signalling during zebrafish somitogenesis. Mech. Dev. 120, 1083– 1094.

Smith, J. L., and Schoenwolf, G. C. (1998). Getting organized: New insights into the organizer of higher vertebrates. Curr Top Dev Biol. 40, 79-110.

Sparrow, D.B., Jen, W.C., Kotecha, S., Towers, N., Kintner, C., Mohun, T.J. (1998). Thylacine1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryos and interacts with the Notch pathway. Development 125, 2041–2051

Stern, C. D. and Keynes, R. J. (1987). Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99, 261-272.

Summerbell, D. and Rigby, P. W. J. (2000). Transcriptional regulation during
somitogenesis. Curr. Top. Dev. Biol. 48, 301-318.

Sun, X., Meyers, E.N., Lewandoski, M., Martin, G.R., (1999). Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–1846.

Tajbakhsh, S., Rocancourt, D. and Buckingham, M. (1996). Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384, 266-270.

Tajbakhsh, S. and Buckingham, M. (2000). The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr. Top. Dev. Biol. 48, 225-268.

Tajbakhsh, S., Borello, U., Vivarelli, E., Kelly, R., Papkoff, J., Duprez, D.,Buckingham, M. and Cossu, G. (1998). Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125, 4155-4162.

Takahashi, Y., Koizumi, K., Takagi, A., Kitajima, S., Inoue, T., Koseki, H., and Saga, Y. (2000). Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat. Genet. 25: 390–396.

Takke, C. and Campos-Ortega, J. A. (1999). her1, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development. Development 126, 3005-3014.
Takke C, Dornseifer P, v Weizsacker E, Campos-Ortega JA. (1999). her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signaling. Development 126, 1811–1821.

Tam, P. P. L., and Beddington, R. S. P. (1992). Establishment and organization of germ layers in the gastrulating mouse embryo. Ciba Found. Symp. 165, 27–49.

Tam, P. P. and Trainor, P. A. (1994). Specification and segmentation of the paraxial mesoderm. Anat. Embryol. 189, 275-305.

Teboul1, L., Hadchouel, J., Daubas, P., Summerbell, D., Buckingham, M. and Peter, W. J. Rigby (2002). The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5but not for subsequent, multiple phases of somitic myogenesis. Development 129, 4571-4580

van Eeden, F. J. M., Holley, S. A., Haffter, P. and Nüsslein-Volhard, C. (1998). Zebrafish segmentation and pair-rule patterning. Dev. Genet. 23, 65-76.

von Weizsäcker, E. (1994). Molekulargenetische Untersuchungen an sechs Zebrafisch-Genen mit Homologie zur Enhancer of split Gen-Familie von Drosophila. PhD thesis, Universität zu Köln.

Weintraub, H., Tapscott, S. J., Davis, R. L., Thayer, M. J., Adam, M. A., Lassar, A. B. and Miller, A. D. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86, 5434-5438.

Yamaguchi, T.P., Harpal, K., Henkemeyer, M., Rossant, J., (1994). fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8, 3032–3044.

Yoo K. W., Kim C. H., Park H. C., Kim S. H., Kim H. S., Hong S. K., Han S., Rhee H., Huh T. L. (2003). Characterization and expression of a presomitic mesoderm-specific mespogene in zebrafish. Dev Genes Evol 213:203–206

Yoon, J. K. and Wold, B. (2000). The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev. 24, 3204-14.

Yun, K. S., and Wold, B. (1996). Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8, 877–889.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top