(18.205.60.226) 您好!臺灣時間:2019/12/15 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:張夢書
研究生(外文):Meng-Shu Chang
論文名稱:微粒沈積均勻度的量測與應用
論文名稱(外文):Measurement and Application of Particles Deposition Uniformity
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:74
中文關鍵詞:均勻度基因槍
外文關鍵詞:uniformitygene gun
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
常見基因轉殖的基因載入模式,包括︰基因槍、直接肌肉注射、複合基因、電穿孔、細菌或病毒感染等。其中以基因槍的基因載入模式,對細胞危害性低、所需的載入物質劑量低、可載入的DNA劑量大、以及可廣泛的應用在各種體內和體外的培養細胞等優點,使得基因槍成為生物技術上的新趨勢。
本研究針對影響基因槍之金微粒沈積均勻度與收集效率的因子,像是氦氣出口大小( 0.05, 0.1, 0.5, 5, 20 mm)、出口位置( 0, 15, 25 mm)、氦氣氣流壓力(100, 150, 250, 400, 600 psi)、錐狀體長度(5, 15, 35, 65, 105, 155 mm)、金微粒沉積面積的直徑(10, 15, 25, 30, 50 mm)、筒狀體長度(25, 35, 45, 65, 95, 155 mm)等,以探討對基因轉殖效率的影響,進而找出最佳化的轉殖效度:氦氣出口大小0.05 mm、出口位置0 mm、氦氣氣流壓力600 psi、錐狀體長度65 mm、金微粒沉積面積的直徑50 mm。改良後的基因槍收集效率增加為原先設計的5.2倍、均勻度提升了2.5倍、轉殖效度提升了17.3倍。
The ways of gene deliver during gene transfection included gene gun, injection directly into the muscle, complex DNAs, electroporation, bacterial systems, and viral delivery systems. Among them, the advantages of the gene gun was below: low harmfulness for cell, only small amounts of DNA for requirement, but large DNA fragments may be transferred, applicable to both in vitro and in vivo transformation. So the gene gun will become a new trend in biological technology.
In this research, we confer relationship between uniformity and slot width (0.05, 0.1, 0.5, 5, 20 mm), slot height (0, 15, 25 mm), helium pressure (100, 150, 250, 400, 600 psi), transition cone (5, 15, 35, 65, 105, 155 mm), diameter of target filter (10, 15, 25, 30, 50 mm), column height (25, 35, 45, 65, 95, 155 mm). The best transfection occurs when slot width is 0.05 mm, slot height is 0 mm, transition cone is 65 mm and diameter of target filter is 50 mm. Collection efficiency is 5.2 times than original design, uniformity is 2.5 times than original design and transfection is 17.3 times than original design.
摘要…………………………………….…….………….……….….…………...….i
Abstract………………………………………………………………….………….ii
目錄…………………………………………………………….…………….…..…iii
圖目錄……………………………………………………………………….….….vi
符號表……………………………………………………………….…………….viii
一、研究目的與背景…………………………………………………………………1
1.1研究目的…………………………………………………………...……….1
1.1.1提升基因槍射出金微粒的沈積均勻度……………………………….1
1.1.2降低基因轉殖的昂貴成本………………………………………...…..1
1.2背景………………………………………………………………………....1
1.2.1生物技術在醫療、食品及農業等應用科學的重要性……………….1
1.2.2常見的基因轉殖技術………………………………………………….3
1.2.3基因槍的優缺點……………………………………………………….6
1.2.4影響基因槍轉殖效率的原因……………………………………….....7
1.2.5基因轉殖常用的細胞………………………………………………...10
1.2.6電化噴霧……………………………………………………………...11
二、慣性衝擊的原理……………………………………………………………….12
2.1雷諾數……………………………………………………………………..12
2.2史托克常數………………………………………………………………..13
三、實驗方法………………………………………………………………………14
3.1儀器設備…………………………………………………………………..14
3.1.1基因槍選用…………………………………………………………...14
3.1.2微粒的選擇……………………………………………………….…..15
3.1.3子彈的製備…………………………………………………………..16
3.1.3.1清洗及乾燥尼龍管………………………………………………16
3.1.3.2子彈製備流程……………………………………………………16
3.1.4影像擷取系統………………………………………………………...18
3.1.4.1顯微鏡外接數位相機……………………………………………18
3.1.4.2視野校正……………………………………………...………….18
3.2視野選取方式…………………………………………………………......19
3.2.1等距離法……………………………………………………………...19
3.2.2等面積法…………………………………………………………...…19
3.3影像分析軟體……………………………………………………………..19
3.4覆蓋率與均勻度…………………………………………………………..22
3.4.1覆蓋率………………………………………………………………...22
3.4.2均勻度………………………………………………………………...23
3.5計數效率與收集效率…………………………………………………..…24
3.6基因轉殖效度的計算…………………………………………………..…25
3.7標準化…………………………………………………………………..…27
四、結果與討論……………………………………………………………………27
4.1等距離法與等面積法比較…………………………………………..……27
4.1.1等距離法……………………………………………………..….……27
4.1.2等面積法……………………………………………………….……..27
4.2均勻度與覆蓋率對轉殖效率的影響…………………………………..…27
4.2.1氦氣出口大小(SW)………………………………………………..…..28
4.2.2氦氣出口位置(SH)……………………………………………………29
4.2.3壓力………………………………………………………………...…30
4.2.4錐狀體的長(TC)……………………………………………................31
4.2.5筒狀體的長(CH)………………………………………………………32
4.2.6金微粒沉積面積的直徑(TD)…………………………………………33
4.2.6.1錐狀體長(TC) 5 mm……………………………………………...33
4.2.6.2錐狀體長(TC) 25 mm…………………………………………….34
4.2.6.3錐狀體長(TC) 65 mm………………………………………….…36
五、結論與建議…………………………………………………………………….37
參考文獻……………………………………………………………………………38

圖目錄
Figure 1:BHK-21纖維母細胞之單層細胞………………………………………43
Figure 2:B16-f10上皮細胞………………………………………………………..43
Figure 3:電化噴霧(Electrospray)…………………………………………………44
Figure 4:基因槍…………………………………………………………………...45
Figure 5:子彈製備系統(Tubing Preparation System)…………………………….46
Figure 6:切管器(Tubing Cutter)…………………………………………………...46
Figure 7:子彈匣及子彈(Cartridge Holder and Cartridges)………………….……47
Figure 8:顯微鏡外接數位相機……………………………………………………47
Figure 9:光柵(Light Railings)………………………….…………………………48
Figure 10:慣性衝擊示意圖…………………………………………………….…48
Figure 11:基因轉殖效度的計算……………………………………………….…49
Figure 12:灰階……………………………………………………………………..50
Figure 13:影像處理之雜訊濾除………………………………………………….51
Figure 14:影像處理之影像邊緣強化…………………………………………….52
Figure 15:影像處理之二值化.……………………………………………………53
Figure 16:影像處理之黑白互換………………………………………………….54
Figure 17:影像處理之濾除不要的微粒…………………………………………55
Figure 18:影像處理之分離疊合之微粒…………………………………………56
Figure 19:影像處理之微粒數目計數……………………………………………57
Figure 20:系統圖…………………………………………………………………58
Figure 21:等距離法與等面積法微粒分佈圖………………………………….…59
Figure 22:等距離法與等面積法計數效率……………………………………….60
Figure 23:轉殖效度模式……………………………………………………….….61
Figure 24:氦氣出口大小(SW)……………………………………………………...62
Figure 25:氦氣出口位置(SH)……………………………………………………...63
Figure 26:氦氣壓力………………………………………………………………..64
Figure 27:錐狀體高度(TC)……………………………………………………..…65
Figure 28:筒狀體高度(CH)……………………………………………………….66
Figure 29:標的面積直徑(TD)-錐狀體長(TC) 5 mm……………………………..67
Figure 30:標的面積直徑(TD)-錐狀體長(TC) 25 mm……………………………68
Figure 31:標的面積直徑(TD)-錐狀體長(TC) 65 mm……………………………69
Figure 32:最佳化的Spacer………………………………………………............71
Figure 33:原始設計與改良後Spacer比較……………………………………...72
Figure 34:等距離法……………………………………………………………….73
Figure 35:等面積法……………………………………………………………….74
1.賴全裕、陳志傑;石東生及林文印︰纖維氣膠采樣器之研發-氣膠微粒在濾紙沈積之不均勻度探討,1999年氣膠科技國際研討會,國立台灣大學,台北,台灣,9月30日~10月2日,1999。
2.賴全裕、陳志傑;石東生、林文印、黃文玉︰氣氣膠微粒在濾紙沈積之不均勻度探討,2000年頭班衛生學術研討會,成功大學,台南,台灣,4月29日~30日,2000。
3.鄭朝彬︰利用影像處理技術量測不織布棉網均勻度與孔洞大小之研究。逢甲紡織工程研究所,民國八十七年。
4.Yu, C. P., Diu, C. K. and Soong, T. T.: Statistical analysis of aerosol deposition in nose and mouth. Am. ind. Hyg. Assoc. J. 42, 726-733., 1988.
5.Rao, A. K. and Whitby, K. T. “Non-Ideal Collection Characteristics of Inertial Impactors─I. Single-State Impactors and Solid Particles.” J. Aerosol Sci. 1978a, 9, 77-86.
6.Rao, A. K. and Whitby, K. T. “Non-Ideal Collection Characteristics of Inertial Impactors─I. Single-State Impactors and Solid Particles.” J. Aerosol Sci. 1978a, 9, 77-86.
7.Lai, C. Y., Chen, C.C. and Hwang, J. S.: Determination of Uniformity of Filter Deposits, AS&T, (revised, 2002).
8.Yeh et al., 1974; Nguyen et al., 1975; Ingham, 1981; Hinds, 1982; Lathrache et al., 1986; Blackford et al., 1986; Liu et al., 1986; Emi et al., 1987; Lathrache et al., 1987).
9.Davies, C.N., Filtration of Aerosol. J. Aerosol Sci. 14:147-161, 1983.
10.Hinds, W.C.: Aerosol Technology. New York: John Wiley and Sons, Inc. 164-186, 1982.
11.Yang, N. S., W. H. Sun and D. McCabe (1996), Developing particle-mediated gene transfer technology for research into gene therapy of cancer. Mol. Med. Today, Nov. 1996: 476-481.
12.Hall, P.: The Bootstrap and Edgeworth Expansion., New York, Springer-Verlag New York Inc., pp. 1-35., 1992.
13.Lai, C. Y., Chen, C.C. and Hwang, J. S.: Determination of Uniformity of Filter Deposits, AS&T, (revised, 2002).
14.Rao, A. K. and Whitby, K. T. “Non-Ideal Collection Characteristics of Inertial Impactors-I. Single-State Impactors and Solid Particles.” J. Aerosol Sci. 1978a, 9, 77-86.
15.Rao, A. K. and Whitby, K. T. “Non-Ideal Collection Characteristics of Inertial Impactors─II. Cascade Impactors.” J. Aerosol Sci. 1978b, 9, 87-100.
16.Vincent, J.H.: Aerosol Sampling - Science and Practive, John Wiley & Sons., 1989.
17.Baron, P.A., C.C. Chen, D.R. Hemenway, and P. O’Shaughnessy: Nonuniform air air flow in inlets: The effect on filter deposits in the filter sampling cassette. Am. Ind. Hug.
18.Yang, N. S., C. De Luna and L. Cheng (1994), Gene transfer via particle bombardment: applications of the accell gene gun. Gene Therapeutics: Methods and Application of Direct Gene Transfer, edited by J. A. Woff, pp. 193-209.
19.Kittel, C. (2001), “Deliver of DNA vaccines to the body.
20.Christou, P. (1994), Application to plants, Particle bombardment Technology for Gene Transfer”, edited by N. S. Yang and P. Christou, Oxford University Press New York, pp. 71.99.
21.Inventing Tomorrow, Fall 2000.http://www.itdean.umn.edu/inventing/00fall/cover/genegun.html, 1/26/2003
22.Kuo, C. F., J. H. Wang and N. S Yang(2002), Direct gene and vaccination via skin transfection using a gene gun, In “Method in Molecular”, Vol. 69, Gene Therapy Protocols, 2th ed, edited by J.R. Morgan(Humana Press Inc. Totowa, New Jersey) pp. 137-147.
23.Whitmore, M., LI, S., and Huang, L. (1999). LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther. 6, 1867 1875.
24.Somia, N., and Verma, I.M. (2000). Gene therapy: Trials and tribulations.Nat. Rev. Genet. 1, 91 99.
25.Yang, N.S., Burkholder, J., Roberts, B., Martinell, B., and Mccabe, D. (1990). In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. U.S.A. 87, 9568 9572.
26.Aragao, F.J.L., Grossi de Sa, M.F., Davey, M.R., Brasileiro, A.C.M., Faria, J.C. and Rech, E.L. (1993), Plant Cell Rep., l 2, 483-490. Factors influencing transient gene expression in bean using an electrical particle acceleration device.
27.Klein, T.M. Gradziel, T., Fromm, M.E., Sanford, J.C. (1988), Bio/Technology, 6, 559-563. Factor influencing gene delivery into Zea mays cells by high-velocity microprojectiles.
28.MaCabe, D.E., Swain, W.F., Martinell, B.J. and Christo, P. (1988), Bio/Technology, 6, 923-926. Stable transformation of soybean by particle acceleration.
29.Sanford, J.C., Klein, T.M., Wolf, E.D. and Allen, N. (1987),J. Part. Sci. Technol., 5, 27-37. Delivery of substances into cells and tissues using a particle bombardment process.
30.Hunold, R., Bronner, R. and Hahne, G.. (1994), The Plant J., 5, 593-604. Early events in microprojectile bombardment: cell viability and particle location.
31.Charest, P.J., Calero, N., Lachance, D., Datla, D.S.S., Duchesne, L.C. and Tsang, E.W.T. (1993), Plant Cell Rep., l 2, 189-193. Microprojectile-DNA delivery in conifer species, factor affecting assessment of transient gene expression using the GUS reporter gene.
32.Sanford, J.C., Smith, F.D. and Russell, J.A. (1993), Methods Enzymol., 217, 483-509. Optimising the biolistic process for different biological applications.
33.Oard, J.H. (1991), Biotech. Adv., 9, 1-11. Physical methods for the transformation of plant cells.
34.Genga, A.A., Cerotti, A., Bollini, R., Bernacchia, G. And Allavena, A. (1991), J. Genet. Breed., 45, 129-134. Transient gene expression in bean tissues by high-velocity microprojectile bombardment.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 呂秋文(1988)。S-P表注意係數在數學科上之應用研究。國立政治大學學報,59,117-193。
2. 何英奇(1989)。精熟學習策略配合微電腦化S-P表分析診斷對學生學習效果的實驗研究。師大教育心理學報,22,191-214。
3. 王子華、黃世傑(2001)。網際網路評量與試後分析系統(WATA)之設計。2001資訊與教育雜誌特刊,276-286。
4. 余民寧(1995)。認知診斷測驗的發展趨勢。教育研究雙月刊,45,14-22 。
5. 何榮桂(1997)。從「測驗電腦化與電腦測驗化」再看網路化測驗。測驗與輔導,144,2972-2974。
6. 吳裕益(2000)。教學評量的新趨勢。教育研究,70,6-9。
7. 陳騰祥(1986)。S-P表分析在學習診斷的應用法及其實作感受之探究。輔導學報,9,275-311。
8. 陳騰祥(1989)。學習輔導課程及其利用S-P表分析實作教學效果的實徵研究。輔導學報,12,85-141。
9. 黃桂君,吳裕益(2001)。應用S-P 分析模式診斷學生數學計算能力-以聽障學生分數減法學習為例。國立台南師範學院特殊教育學系:特殊教育與復健學報,9,101-131。
10. 康龍魁(1994)。教學評量與命題之探討。商業教育,17,1-9。
11. 張俊紳(1993)。教學評量與回饋。國教之聲,26(4),54。
12. 簡茂發(1999)。多元化評量之理念與方法。教師天地,99,11-17。
13. 石之瑜,〈威權人格與雙首長制〉,《美歐季刊》,第12卷,第4期,民國86年。
14. 徐正戎,〈法國第五共和總統權限之剖析及其演變〉,《法學叢刊》,第158期,民國84年。
15. 周陽山,〈總統制、議會制、半總統制與政治穩定〉,《問題與研究》,第35卷,第8期,民國85年。
 
系統版面圖檔 系統版面圖檔