跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子晏
研究生(外文):Zu Yan Huang
論文名稱:模擬多顆具布朗運動膠體在靜態溶液中凝集沉降的現象
論文名稱(外文):Brownian Flocculation in quiescent solution
指導教授:張有義張有義引用關係
指導教授(外文):You Im Chang
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:119
中文關鍵詞:DLVO理論布朗運動蒙地卡羅法軌跡方程式
外文關鍵詞:DLVO theoryBrownian diffusion forceMonte Carlo Methodstrajectory equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的在探討膠體粒子在靜態溶液中之吸附凝集作用,研究可分為兩部份。第一部份:結合了凡得瓦爾吸引力、電荷排斥力、流體動力學交互作用力,並可同時考慮強重力/弱布朗運動及強布朗運動/弱重力的情況下,推導出兩球形膠體粒子間的臨界吸附軌跡方程式,再利用數值分析中的Runge-Kutta解法,以電腦模擬方法畫出膠體粒子的臨界吸附軌跡曲線,依照公式即可得到凝集效率。其中,凡得瓦爾吸引力與電荷排斥力結合成粒子間的交互作用力,以DLVO理論討論,流體動力學交互作用力的影響則以阻滯參數來表示,重力則採用圓球座標、低雷諾數系統下,兩膠體粒子的線性移動方程式來計算,布朗運動的描述用Langevin方程式解之,並以無因次重力參數Gr建立重力與布朗運動間的相互關係。第二部份:使用隨機推測學法,研究多顆膠體粒子分散的溶液系統,探討在不同穩定狀況下,膠體最終平衡位置及凝集構形。
由研究結果發現,第一部份:當兩膠體粒子間一致性越高時λ2γ≒1,重力作用越小時,凝集時間會增長,使得凝集效率會產生陡升的趨勢,此時無因次重力數Gr會呈陡降趨勢,若Gr<0.1而不考慮布朗運動時,就會高估凝集效率(α),而考慮布朗運動則會修正凝集效率。第二部份:當膠體不考慮重力時,膠凝後的凝集結構則由膠體所處於的穩定區域位置所決定。當膠體之間作用力包含重力時,沉降後的沉降層數則與穩定區域沒有絕對的關係,需視膠體粒子的單位距離總能障大小(fR/R)與重力(fG)之間的關係而定。
The main purpose of this thesis is to investigate the flocculation behavior of colloidal particles with different sizes and densities in quiescent media. The thesis was divided into two parts as follows:1. to calculate the capture efficiency of colloidal particles under condition of strong gravity/weak Brownian effect and strong Brownian/weak gravity effect. In thesis simulation, with consideration of interparticle force, hydrodynamic interaction, gravitational force and Brownian diffusion force (i.e. described by the Langevin equation), the limiting trajectory between two flocculating particles was determined by solving the force balanced equation using the Runge-Kutta method. 2. to simulate the flocculation behavior by using the Monte Carlo method, at which the flocculation state in a poly-dispersed system was investigated.
From the above analyses, we found this:1. when the sizes and densities of two interacting particles are close to each other (i.e. λ2γ≒1), because of the steep decreases of gravity factor, both the time required for flocculation and the capture efficiency with increase with the decrease of gravitational force. The capture efficiency will be over-estimated at Gr<0.1 when the Brownian diffusion force on behavior of particles is not considered. 2. the find flocculation structure of particles will be determined by their stability region in the stability phase diagram when the gravitational force are not considered. On the contrary, when the gravitational force are considered, the final flocculation state of particles is independent of their stability region, but dependent on the relationship between the potential energy barrier per unit of separation distance (fR/R) and gravitational force (fG).
目錄

頁次
誌謝...........................................................I
中文摘要......................................................II
英文摘要.....................................................III
目錄..........................................................IV
圖目錄.......................................................VII
符號說明...................................................... XI

第一章 緒論...................................................1

第二章 文獻回顧...............................................3
2-1 簡介......................................................3
2-2 DLVO理論..................................................4
2-2-1 凡得瓦爾吸引力........................................5
2-2-2 靜電排斥力............................................6
2-2-3 電雙層理論............................................6
2-2-4 溶劑分子結構力........................................7
2-3 流體動力學交互作用力......................................8
2-4 重力.....................................................10
2-5 布朗運動.................................................12
2-6 模擬方法.................................................13
2-6-1 蒙地卡羅法...........................................14

第三章 程式建立..............................................15
3-1 程式模型.................................................15
3-2 相對速度.................................................19
3-3 膠體粒子間交互作用項.....................................20
3-3-1 凡得瓦爾吸引位能vA...................................20
3-3-2 電雙層排斥位能vR.....................................21
3-3-3 DLVO理論特性........................................24
3-4 流體動力交互作用項.......................................28
3-4-1 對稱平移運動.........................................28
3-4-2 不對稱平移運動.......................................30
3-5 重力項...................................................33
3-6 布朗運動項...............................................34
3-6-1 Langevin方程式......................................34
3-6-2 重力與布朗運動交互影響...............................36
3-7 軌跡方程式...............................................38
3-8 凝集效率.................................................41
3-9 蒙地卡羅法...............................................43
3-9-1 交互作用項...........................................45
3-9-2 重力.................................................47
3-9-3 結果判定.............................................48

第四章 結果討論..............................................49
4-1 粒徑比與阻滯度對能障的影響...............................50
4-2 密度比與無因次重力數的影響...............................56
4-3 不具布朗運動時的凝集效率曲線.............................59
4-3-1 高電解質濃度時的凝集效率曲線.........................59
4-3-2 具DLVO交互作用之凝集效率曲線........................59
4-3-3 相對密度比對凝集效率曲線的影響.......................66
4-3-4 不同重力場下電解質濃度對凝集效率的影響...............67
4-4 具布朗運動時的凝集效率曲線...............................77
4-4-1 布朗運動對臨界捕捉軌跡的影響.........................81
4-4-2 布朗運動對臨界電解質濃度的影響.......................81
4-5 顆膠體粒子分散系統.......................................88
4-5-1 電解質濃度對懸浮凝集結構的影響.......................88
4-5-2 電解質濃度對沉降凝集結構的影響.......................93

第五章 結論與建議............................................95
5-1 結論.....................................................95
5-2 建議.....................................................96

參考文獻......................................................97
附錄A
附錄B
簡歷
References

1.Derjaguin, B., and Landau, L. (1993). "Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes." Progress in Surface Science, 43(1-4), 30-59.
2.Verwey, E. J. W., and Overbeek, J. T. G. (1955). "Theory of the stability of lyophobic colloids." Journal of Colloid Science, 10(2), 224-225.
3.Hamaker, H. C. (1937). "The London-Van der Waals attraction between spherical particles." Physica IV, 10, 1058-1072.
4.Shaw, D. J. (1992). Introduction to colloid and surface chemistry(4th ed.), Marcel Dekker.
5.Reerink, H., and Overbeek, J. T. G. (1954). "The rate of coagulation as a measure of the stability of silver iodide sols." Discussions of the Faraday Society, 18, 74-84.
6.Ho, N. F., and Higuchi, W. I. (1968). "Pregerential aggregation and coalescence in heterodispersed systems." Journal Of Pharmaceutical Sciences, 57(3), 436-442.
7.Gouy, G. (1910). J. Phys., 9, 457.
8.Chapman, D. L. (1913). Phil. Mag., 25, 475.
9.彭騰輝. (2004). "The effect of Brownian diffusion force on the gravity-induced flocculation of Brownian particles."
10.Israelachvili, J. N. (1992). "Intermolecular and surface forces." Academic Press, London, 262.
11.Lifshitz, E. M. (1956). Sov. Phys. JETP 2, 73.
12.Stimson, M., and Jeffrey, G. B. (1926). "The motion of two spheres in viscous fluid." Proc. Roy. Soc. A, 113-110.
13.Maude, A. D. (1961). "End effects in a falling-sphere viscometer." British Journal of Applied Physics, 6, 293.
14.Jeffrey, D. J., and Onishi, Y. (1984). "Calculation of resistance and mobility functions for two unequal rigid spheres in low-Reynolds number flow." Journal of Fluid Mechanics, 139, 261.
15.Saffman, P. F., and Turner, J. S. (1956). "On the collision of Drops in Turbulent Clouds." J. Fluid Mech., 1, 16.
16.Melik, D. H., and Fogler, H. S. (1984). "Gravity-induced flocculation." Journal of Colloid and Interface Science, 101(1), 72.
17.Wacholder, E., and Sather, N. F. (1974). "The hydrodynamic interaction of two unequal spheres moving under gravity through a quiescent fluid." J Fluid Mech, 65(Part 3), 417.
18.Müller, H., and Beihefte, K. (1928). "Zur theorie der elektrischen ladung und der koagulation der kolloide." 27,223.
19.Von Smoluchowski, M. (1917). Z. Phys. Chem., 92,129.
20.Matthews, B. A., and Rhodes, C. T. (1970). "Studies of the coagulation kinetics of mixed suspensions." Journal of Colloid and Interface Science, 32(2), 332.
21.Ramarao, B. V., Tien, C., and Mohan, S. (1994). "Calculation of single fiber efficiencies for interception and impaction with superposed brownian motion." Journal of Aerosol Science, 25(2), 295.
22.Chang, Y.-I., and Whang, J.-J. (1997). "Theoretical simulation of the collection efficiencies of brownian particles." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 125(2-3), 137.
23.Chang, Y.-I., and Whang, J.-J. (1998). "Deposition of Brownian particles in the presence of energy barriers of DLVO theory: effect of the dimensionless groups." Chemical Engineering Science, 53(23), 3923.
24.Melik, D. H., and Fogler, H. S. (1984). "Effect of gravity on Brownian flocculation." Journal of Colloid and Interface Science, 101(1), 84.
25.Newman, M. E., and Barkema, G. T. (1999). Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford.
26.Jia, X., Wedlock, D. J., and Williams, R. A. (2000). "Simulation of simultaneous aggregation and sedimentation." Minerals Engineering, 13(13), 1349.
27.Happel, J., and Brenner, H. (1965). Low-Reynolds Number Hydrodynamics, Martinus Nijhoff.
28.Batchelor, G. K. (1982). "Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory." Journal of Fluid Mechanics, 119, 379.
29.Batchelor, G. K. (1976). "Brownian diffusion of particles with hydrodynamic interaction." J Fluid Mech, 74(Part 1), 1.
30.Wen, C. S. (1996). The fundamentals of aerosol dynamics, World Scientific.
31.Spielman, L. A. (1970). "Viscous interactions in Brownian coagulation." Journal of Colloid and Interface Science, 33(4), 562.
32.Gregory, J. (1966). "General discussion." Discussions of the Faraday Society, 42, 168.
33.Hogg, R., Healy, T. W., and Fuerstenau, D. W. (1966). "Mutual coagulation of colloidal dispersions." Transactions of the Faraday Society, 62, 1638.
34.Ruckenstein, E. (1978). "Reversible rate of adsorption or coagulation of brownian particles--effect of the shape of the interaction potential." Journal of Colloid and Interface Science, 66(3), 531.
35.Elimelech, M. (1998). Selection of a Simulation Method.
36. Chang, Y.-I., and Ku, M.-H. (2001). "Gravity-induced flocculation of non-Brownian particles." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178(1-3), 231.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 林明地(民92)。一位卓越國民小學校長的描繪。社教雙月刊。2003年4月。20-24
2. 林明地(民92)。一位卓越國民小學校長的描繪。社教雙月刊。2003年4月。20-24
3. 林正芳(民85):宜蘭的教育史料。宜蘭文獻雜誌,第二十二期(雙月刊)。58-70。
4. 7. 李雪津,淺談政府資訊業務整體委外,電腦科技,45 期,1997年,頁42-63。
5. 王明珂(民85)。誰的歷史:自傳、傳記與口述歷史的社會記憶本質。思與言。第34卷第3期。147-184。
6. 32. 楊麒麟、林宜隆,資訊系統委外成功模式之研究-以我國警察機關為例,中央警察大學警學叢刊,第三十二卷第五期,pp225~244,民國91年3月.
7. 梁坤明(民89)。建立教師專業發展能力指標。教育資料與研究,34,37-39。
8. 林海清(民84)。研訂校務發展計畫實務探討。教育研究雙月刊,第46期。53-58
9. 26a.范祥偉,委託外包的理論與實務探討,人事月刊,189 期,2001年,47-55。
10. 林正芳(民85):宜蘭的教育史料。宜蘭文獻雜誌,第二十二期(雙月刊)。58-70。
11. 張德銳(民85)。對「中小學學校之經營」之評論。教改通訊,19,9-12。
12. 王明珂(民85)。誰的歷史:自傳、傳記與口述歷史的社會記憶本質。思與言。第34卷第3期。147-184。
13. 邱水金(民82):清代蘇澳開發之初探,宜蘭文獻雜誌2。宜蘭:宜蘭縣文獻委員會。
14. 13. 王存國,「影響軟體系統委外成效因素之研究-商譽交易特性社會關係與服務品質」,管理學報,16卷第一期,民國88年3月,頁69-99。
15. 蔡秀媛(民89)。初任校長導入輔導制度設計理念。教育資料與研究,37,37-51。