跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/05 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃浩閔
研究生(外文):Hao-Min Huang
論文名稱:近場相位移接觸式彈性光罩微影術製作高頻表面聲波元件
論文名稱(外文):FABRICATION OF HIGH-FREQUENCYSURFACE ACOUSTIC WAVE TRANSDUCERSUSINGNEAR-FIELD PHASE SHIFTCONTACT-MODE PHOTOLITHOGRAPHYWITH AN ELASTOMERIC PHASE MASK
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-Shao Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:99
中文關鍵詞:近場相位移微影技術表面聲波元件聚二甲基矽氧烷
外文關鍵詞:Near field phase shift lithographyPolydimethylsiloxaneSurface Acoustic Wave
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

由於光學微影技術有其物理上之限制,以及設備昂貴等問題,使得光學微影技術的發展困難,本研究研發製作大尺寸微米或次微米線路之方法如近場相位移微影術NFPSL (near-field phase shift photolithography),以及使用聚二甲基矽氧烷( polydimethyliloxane, PDMS)之翻印技術,並使用所發展之技術來製作表面聲波(SAW: Surface Acoustic Wave)元件。近場光微影術為利用一機械性質柔軟的相位偏移光罩(通常為PDMS光罩)與光阻做接觸式的曝光,與傳統微影技術不同,其利用近場光在相位光罩之相位反轉邊緣進行曝光(The phase-edge method),如此一來可獲得遠小於入射光波長線寬之圖型,本研究以曝光波長365nm光源,製作奈米線寬之表面聲波(SAW: Surface Acoustic Wave)元件。使用近場光微影術與其他相位光罩技術做比較有以下優點:(1)製程簡單而且便宜。(2)可利用線寬為微米級之光罩來製作奈米級線寬之圖型。(3) PDMS光罩為一軟性材料,可與曝光表面做完美之接觸。
Abstract

Surface-acoustic wave (SAW) filters operating at frequency in the 1 to 3 GHz-range have been widely used in the applications of mobile, wireless, cable modem, cellular phone and remote control. Current lithography techniques are feasible for SAW device fabrication, such as I-line (365nm) UV photolithography, imprint lithography, conformal contact photolithography and near field phase shift photolithography (NFPSL). In common production, the narrowest line width must be around 0.3 mm with the I-line UV photolithography typically used in the industry; this corresponds to a quarter-wavelength, giving a maximum frequency of typically 3 GHz. Therefore, lithography with the ability of high-volume-production over large area for producing high frequency (i.e. 1~3 GHz), low-cost SAW devices is anticipated. The operating frequency is limited by fabrication techniques. In order to operate at high frequency, SAW filters can be efficiently excited at higher harmonics of their fundamental frequency. And in NFPSL, a transparent mask induces abrupt changes of the phase of the light used for exposure, and causes optical attenuation, which is owing to destructive optical interference at the edges of circuit features, at those locations. NFPSL is a low-cost, high-throughput production over large areas method for nano-structure pattern transfer and can be used to fabricate nano-structure pattern by using a mask with micro line width pattern. To meet the demands have low-cost and high-volume-production over large area, near field phase shift photolithography may be a better solution than other lithography.
In this study, we demonstrate the high frequency (i.e. 1~3 GHz) and low-cost SAW devices that are fabricated by using the near field phase shift photolithography, as the line widths of NFPSL finger pattern are 10 and 5 um. The mask, which is duplicated from the special design mold with 10 and 5 um line width finger patterns, of the near field phase shift optical lithography has a potential use in SAW devices operating over the gigahertz range.
TABLES OF CONTENTS

CHINESE ABSTRACT……….……………….………………..………I
ENGLISH ABSTRACT…….……………...............…………….……..II
ACKNOWLEDGEMENTS…..………..………………..…...…………IV
TABLE OF CONTENTS….………...…......…….………………….…. V
LIST OF TABLES…………………......…………….………………. VIII
LIST OF FIGURES……………….......………………………….……..IX
CHAPTER
I Introduction

1.1 Study motive……………………………..………….…….1
1.2 Research direction………………….…………....…4
1.3 Research goal………………………………...……..……11
1.4 Introduction to the thesis structure………………....…….12

II Literature review

2.1 Introduction to Surface Acoustic Wave……………….…14
2.2 Principle of surface acoustic wave…………………15
2.2.1 Piezoelectric effect………………………………….16
2.2.2 Important parameters of surface acoustic wave filter…………………………………………………..17
2.3 The application scope of surface acoustic wave device…......20
2.4 The classification and flow chart of surface acoustic wave devices……………………………………………………….23
2.5 Near field phase shift lithography, NFPSL……………….…29
2.6 The optical requirements on phase shift mask………...……..31
2.7 Characteristic and application of PDMS……………….……36
2.7.1 PDMS character………………………………….….…36
2.7.2 The surface structural change of PDMS……...….…….37
2.7.3 The cross-linking reaction in PDMS……….…….……38

III Experimental

3.1 Near field phase shift photolithography process……….….40
3.2Experiment System Setting……………….….……..…42
3.3Experiment material preparation………………….…………46
3.4 Mold preparation of surface acoustic wave device….......49
3.5 Preparation of PDMS phase shift mask for surface acoustic wave device ……………………………………55
3.5.1 Preparation of samples………………..……...55
3.6 The preparation of high frequency surface acoustic wave device…………………….………………………………..59

IV Test and analysis

4.1 Test and analysis on the measured results…….…….…66
V Conclusions
VI Future perspective
6.1 Characteristic studies on PDMS………………….………...89
6.1.1 The measurement of contact angle……..…………......89
6.2 Future topics……………………………………………..…94

REFERENCES…………………………….…...…..…………95








LIST OF TABLES

Table 1.1 The SIA’S 1998 national technology Roadmap….……..…2
Table 1.2 Critical photolithography demand of defined of ITRS in 2001……………………………………………………...….5
Table 2.1 The major application scope of surface acoustic wave device…………………………….……………………...…22
Table 2.2 Commonly plate characteristic material of SAW component …………………………….………………..28
Table 2.3 The both of GSM and CDMA amount statistics of SAW filter………………………………………………….…….28
Table 3.1 Two kinds designs of SAW Mask…………….…………..40
Table 6.1 Contact angle value measurements are performed on the difference patterns of PDMS……………………………....…91










LIST OF FIGURES

FIG 1.1 The definition of coherence, (σ)……………………………..…..8
FIG 2.1 Important parameters of surface acoustic wave filter…….…18
FIG 2.2 The typical structure of SAW filter………..………...…………21
FIG 2.3 Classification of SAW filter……..……………………………..24
FIG 2.4 Basic structure of surface acoustic wave filter…………………24
FIG 2.5 Diagram of surface acoustic wave process flow chart….……...27
FIG 2.6 Reverse electric near field distribution(destructive interference)…………………………………………………33
FIG 2.7 Diagram of Phase shift Mask of Polydimethylsiloxane……….34
FIG 2.8 The Difference between near filed and far field optical intensity..………………………………………………………..35
FIG 2.9 Structural formula of PDMS………………..……….…….…. 37
FIG 2.10 Diagram of Polydimethylsiloxane cross-link reaction……...39
FIG 3.1 Surface acoustic wave Mask of 5μm double interdigital transducer Pattern……………………….…………………41
FIG 3.2 Surface acoustic wave Mask of 10μm double interdigital transducer Pattern….………………………….……….…..41
FIG 3.3 I-line 365 nm stepper…………..……...….……..…….43
FIG 3.4 Coating / Developer Machine………………………..…43
FIG 3.5 E-Gun………………..………………………..…………44
FIG 3.6 Probe Measurement……………………………………..44
FIG 3.7 I-Line 365 nm tube Lamp…………………………………45
FIG 3.8 Near-field Phase Shift photolithography system…………..….45
FIG 3.9 Diagram of Using near-field Phase Shift photolithography process 1…….………………………………..………………47
FIG 3.10 Diagram of Using near-field Phase Shift photolithography process 2……………………………………….…..…………47
FIG 3.11 Diagram of Using near-field Phase Shift photolithography ..48
FIG 3.12 Diagram of Fabrication of surface acoustic wave Mold 1.…52
FIG 3.13 Diagram of Fabrication of surface acoustic wave Mold 2….53
FIG 3.14 Diagram of Fabrication of surface acoustic wave Mold 3….54
FIG 3.15 Polydimethylsiloxane PSM Mask 1………………….………56
FIG 3.16 Polydimethylsiloxane PSM Mask 2………………………….56
FIG 3.17 Diagram of Fabrication of PDMS an elastomeric phase mask 1……………………………………………...…………….57
FIG 3.18 Diagram of Fabrication of PDMS an elastomeric phase mask 2…………………………………………..…………….58
FIG 3.19 Diagram of Fabrication of Surface Acoustic Wave Transducers Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask 1………………………….62
FIG 3.20 Diagram of Fabrication of Surface Acoustic Wave Transducers Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask 2…………………………..63
FIG 3.21 Diagram of Fabrication of Surface Acoustic Wave Transducers Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask 3………….……………….64
FIG 4.1 NFPSL Experiment Analysis Flow Chart………..….……68
FIG 4.2 Spectrophotometer………..………….…….…...……….69
FIG 4.3 Spectrophotometer Measurement Polydimethylsiloxane Transmittance…………………………………...….……69
FIG 4.4 Surface profiler……………….………..….…………….…...70
FIG 4.5 Phase shift thickness of SAW Mold Using Surface profiler measurement ………………………………………………...70
FIG 4.6 Field Emission SEM Microstructure Analysis…...…….……71
FIG 4.7 Probe measurement…………………………….….………..71
FIG 4.8 Fabrication of 10μm Surface Acoustic Wave Transducers FE-SEM picture Using I-Line 365nm Stepper photolithography (A) X250 (B)X800………………………………………….72
FIG 4.9 Fabrication of 5μm Surface Acoustic Wave Transducers FE-SEM picture Using I-Line 365nm Stepper photolithography (A) X250 (B)X800……………………………….…………73
FIG 4.10 Fabrication of 10μm Surface Acoustic Wave Transducers FE-SEM picture Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask (A) X250 (B)X1.5k………………………………………………….74
FIG 4.11 Fabrication of 10μm Surface Acoustic Wave Transducers FE-SEM picture Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask (A) X2.5k (B)X60k……………………………………………….….75
FIG 4.12 Fabrication of 5μm Surface Acoustic Wave Transducers FE-SEM picture Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask (A) X250 (B)X2.0k………………………………………………….….76
FIG 4.13 Fabrication of 5μm Surface Acoustic Wave Transducers FE-SEM figure Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask (A) X2.5k (B)X60k………………………………………………...….77
FIG 4.14 Fabrication of 10μm Surface Acoustic Wave Transducers frequency response Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask……………………………………………………..78
FIG 4.15 Fabrication of 10μm Surface Acoustic Wave Transducers frequency response Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask……………………………………………………..79
FIG 4.16 Fabrication of 10μm Surface Acoustic Wave Transducers frequency response Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask……………………………………………………..80
FIG 4.17 Fabrication of 5μm Surface Acoustic Wave Transducers frequency response Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask……………………………………….……….……81
FIG 4.18 Fabrication of 5μm Surface Acoustic Wave Transducers frequency response Using near-field Phase Shift contact-mode photolithography with an elastomeric phase mask ………………………….………….…….………82
FIG 6.1 Contact angle large as left figure,hydrophobic strong;Contact angle small as right figure,hydrophilic strong…………….89
FIG 6.2 Contact angle value measurements of PDMS…….….……..91
FIG 6.3 Contact angle value measurements are performed on the Grating pattern of PDMS……………………………………92
FIG 6.4 Contact angle value measurements are performed on the surface acoustic wave pattern of PDMS….…………………92
FIG 6.5 Time increase to lead to decrease PDMS hydrophilic,Time increase to lead to PDMS Contact angle neat……………….93
REFERENCES

1.毫微米通訊 第八卷第二期 矽器時的來臨:淺談四十年來微電子科技之成就與挑戰 施敏 P1~P8
2.Pieter "Pete" Burggraaf, "Optical lithography to 2000 and beyond",Solid State Technology, Fed, 1999, pp.31-41
3.http://www.ssttpro.com.tw
4.K.K. Shih and D.B. Dove, J.Vac.Sci.Technol, B12(1), pp.32, 1994
5.F.D. Kalk, R.H. French, H.U. Alpay, and G. Hughes, SPIE Vol.2254, pp.64,1994
6.G. Dao, G. Lin, R. Hainsey, J. Farnsworth, Y. Tokoro, S. Kawada, T. Yamamoto, N. Yoshioka, SPIE Vol.2512, pp.319, 1995
7.P.F. Carcia, R.H. French, K. Sharp, J.S. Meth, and B.W. Smith, SPIE Vol.2884, pp.255,1996
8.B.W. Smith, S. Butt, Z. Alam, S. Kurince, and R.L. Lane, J.Vac.Sci.Technol, B14(6), Vol.3719, 1996
9.Zhong-Tao Jiang, Kentaro Ohshimo, Mitsura Aoyama and Tomuo Yamaguchi, Jpn.J.Appl.Phys., Vol.37 pp.4008-4013, 1998
10.Zhi-Yuan Li, Guo-Zhen Yang, Bi-Zhen Dong, Ben-Yuan Gu, Guo-Qing Zhang, Optic 108, No.4(1998)165-173
11.Akihiro Otaka, Yoshio Kawai and Yutaka Sakakibara, SPIE Vol. Pp.298-307
12.Alessandro Callegari and Katherina Babich, SPIE Vol.3050, pp.507-514
13.eong, H. J.; Pease, F.; Bunau, R. V.; Markle, D. A.; Grenville, A., "The Future of Optical Lithography”, Solid State Technology, 37(4), Apr. 1994,pp. 39-47
14.Bokor, J.; Oldham, W. G.; Neureuther, A. R., "Advanced Lithography for ULSI", IEEE Circuits and Devices Magazine”, Jan. 1996, pp. 11-15
15.Hibbs, M.; Rothschild, M.; Kunz, R., "193-nm Lithography at MIT Lincoln Lab”, Solid State Technology, 38(7), Jul. 1995, pp. 69-78
16.諏訪恭一, , NIKKEI MICRODEVICES,Dec,1998,pp.100-107
17.笠間邦彥, ,電子材料, 1992別冊, pp.8-13
18.Dr. Larry, F. Thompson, Mr. Chris Sparkes, Dr. Ron Miller, "193nmLirhography: A Difficult Extension", The Fourth Symposium on Nano Devices Technology, 1997, pp.4-9~4-13
19.Larry F. Thompson, “ Introduction to Microlithography”, 2nd, ACS, Washington, DC, 1994, ch2
20.Dr. Larry, F. Thompson, Mr. Chris Sparkes, Dr. Ron Miller, "193nmLirhography: A Difficult Extension", The Fourth Symposium on Nano Devices Technology, 1997, pp.4-9~4-13
21. B. J. Lin, Solid State Technol. 35, 43 (1992)
22. http://notes.sematech.org/1999_SIA_Roadmap/Home.htm
23.Y. Kim, J. Park, K. Lee, S. Choi, H. Yoon and J. Sohn, Proc.
SPIE 3748, 332 (1999).
24.T. Takigawa, T. Tojo, Y. Ogawa, K. Koyama, A. Ono, S. Inoue, S. Ito, and M. Goto, SPIE Vol. 2512, pp.180, 1995.
25.M. D. Levenson, N. S. Viswanathan, IEEE Transactions on electron devices, Vol.ED-29, NO.12, December 1982
26.B J. Lin, SPIE Vol.1496, pp.54, 1990
F. Schellengerg et, Technology development in the U.S and Japan:
The Case of the phase-shifting mask, preprint, courtesy of F.
Schellengerg.
27.T. Teraswa、N.Ilasegawa,H.Fukuda,“Imaging characteristics
of multi-phase-shifting and halftone phase shifting masks”,Jpn.J.Appl.phys.vol.30,NO.11,pp2991-2997,1991
28.B J. Lin, Solid state technology, Vol.35, pp.43, January, 1992
29.K. K. Shih and D. B. Dove, J. Vac. Sci. Technol, B12(1), pp.32,1994
30.S. I. Ito, H. Hazama, T. Kamo, H. Miyazaki, H. Sato, K. Hayashi, H. Shigemitsu and I. Mori, SPIE Vol.2197, pp.99, 1994
31.P. F. Carcia, R. H. French, K.Sharp, J. S. Meth, and B W. Smith, SPIE Vol.2884, pp.255 ,1996.
32.Zhong-Tao Jiaang, Tomuo Yamaguchi, Kentaro Ohshimo, Mitsuru Aoyama and Leo Asinovsky, Jpn. J. Appl. Phys. Vol.37, pp.571-576, 1998.
33.T. Terasawa, N. Hasegawa, H. Fukuda and S. Katagiri, Jpn. J. Appl. Phys. Vol.30, pp.2991, 1991
34.H. Mohri, M. Takahashi, K. Mikami, H. Miyashuta, N. Hayashi and H. Sano, SPIE Vol.2322, pp.288,1994.
35.Y. Iwabuchi, J. Ushioda, H Tanabe, Y. Ogura and S. Kishidfa, Jpn. J. Appl. Phys. Vol.32, pp.5900, 1993

36. Nobuyuki Yoshioka,Junji Miyazaki,“Practical attenuated phase-shifting mask with a single-layer absorptive shifter of MoSiO and MoSiON for ULSI fabrication”,IEEE1993
37. F. D.Kalk, R. H. French, H. U. Alpay and G. Hughes, SPIE, Vol.2254, pp.64 , 1994
38. Wen-an Loong,“TiSixNy and TiSixOyNz as embedded materials for APSM in 193nm”,Microelectronic Engineering 46(1999)93-96
39. Reiner Kukla ,”Magnetron sputtering on large scale substrates: an overview on the state of the art”,surface&coatings technology 93(1997)1-6
40. B.window and N.Savvides,J.Vac.Sci.Technol A,4(2),1986,pp.196
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top