伍、參考文獻
Buchinsky, M. (1995), “Estimating the Asymptotic Covariance Matrix for Quantile Regression Models A Monte Carlo Study,” Journal of Econometrics, 68, 303-338.
Buchinsky, M. (2004). 2004年經濟學卓越研究營上課講義,中央經濟研究院。
Chen, M.Y. and J.E. Chen (2001), “Investigations on Quantile Regression: Theories and Applications for Time Series,” manuscript, National Chung Chang University, Chia-Yi, Taiwan.
Chamberlain, G.(1994), “Quantile Regression, Censoring, and the Structure of Wages,” In: Sims, C.A(Ed.) Advance of Econometrics, Proceedins of the Sixth World Congress, 1. Cambridge Univeristy Press, Cambridge, 171-209.
Daniels, H.E. (1961), “The asymptotic efficiency of a maximum likelihood estimator.” Proceedings of the Fourth Berkkely Sympusium on Mathematical Statistics and Probability. Vol. 1. Berkeley: University of California Press.
Huber, P.J. (1967), “The behaviour of maximum likelihood estimates under nonstandard conditions,” Fifth Berkeley Symposium on Mathematical Statistics and probability. Berkeley: University of California Press.
Efron, B.(1979), “Bootstrap Methods: Another Look at the Jackknife,” The Annals of Statistics, 9, 1218-1228.
Efron,B., (1982), “The Jackknife, the Bootstrap and other Resampling Plans. SIAM, Philadelphia.
Fitzenberger, B., (1997), “The Moving Blocks Bootstrap and Robust Inference for Linear Least Squares and Quantile Regressions,” Journal of Econometrics, 82, 235-287.
Knight, K. (1989), “Limit theory for autoregressive parameters in an infinite variance random walk,” Canadian Journal of Statistics:261-278.
Koenker, R. and G. Bassett. (1978), “Regression quantile,” Econometrica, 46, 33–50.
Koenker R. and V. d’Orey(1987). “Computing regression quantiles,” Statistical Algorithms, 383-393.
Koenker, R., and Park, B. J. (1996), “An Interior Point Algorithm for Nonlinear Quantile Regression,” Journal of Econometrics, 71(1-2), 265-283.
Koenker, R. and Q. Zhao (1996), “Conditional Quantile Estimation and Inference for ARCH Models,” Econometric Theory, 12, 793-813.
Lin, H.-Y. (2005), “An Encompassing Test for Non-Nested Quantile Regression Models,” (with C.-M. Kuan), the chair and the presenter of the session of Quantile, the World Congress of the Econometric Society, London, U.K., August, 2005.
Morey, M.J. and L.M. & Schenk. (1984), “Small Sample Behabior of Bootstraped and Jackknifed Regression Estimator,” In: Proceeding of Business and Economic Statistics Section of ASA, 437-442.
Newey, W. K., and K.D. West. (1987), “A simple, Positive Sem-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix”, Econometrica, 55(3), 703-708.
Phillips, PCB. (1991), “A shortcut to LAD estimator asymptotics,” Econometric Theory, 7, 450–463.
Pollard, D. (1989), “Asymptotics via empirical processes,” Statistical Science 4:341-366.
Pollard, D. (1991), “Asumptotics for for least absolute deviation estimators.” Econometric Theory, 7,186-199.
Ruppert, D. and R.J. Carroll(1980), “Trimmed Least Squares Estimation in the Linear Model,” Journal of the American Statistical Association, 75, 828-838.
Stangenhaus, G. (1987), “Bootstrap and Inference Procedures for L1 Regression,” In: Dodfe, Y.(Ed.), Statistical Data Analysis based on the L1-Norm and Related methods. North-Holland, Amsterdam, 323–332.
Koenker, R. (1994), “Confidence Intervals for Regression Quantiles”, in Mandl, P. and Hušková, M. (eds.) Asymptotic Statistics, Springer-Verlag, New York.
Yavas, Abdulah, and Peter F. Colwell, (1995), "A Comparison of Real Estate Marketing Systems: Theory and Evidence," Journal of Real Estate Research, American Real Estate Society, 10(5), 583-600.
Zhao, Q. (1997), “Asymptotically Efficient Median Regression in the Presence of Heteroscedasticity of Unknown Form,” City University of Hong Kong.
陳釗而 (2001),“Investigations on Quantile Regression:Theories and Sapplicatins for Time Series”,中正大學國際經濟研究所碩士論文。劉宜芳 (2003),《拔靴法在分量迴歸顯性檢定之應用》,中正大學國際經濟研究所碩士論文。
黃信樺 (2003),《名次檢定在線性迴歸與分量迴歸顯著性檢定之探討》,中正大學國際經濟研究所碩士論文。