|
Breiman, L. (1996). Bagging predictors, Machine Learning, 24, 123-140.
Breiman, L. (2001). Random forests, Machine Learning, 45, 5-32.
Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regression Trees, Wadsworth, Belmont, CA.
Chan, K. Y., and Loh, W. Y. (2004). LOTUS: An algorithm for building accurate and comprehensible logistic regresion trees, Journal of Computational and Graphical Statistics, 13:4, 826-852.
Conover, W. J. (1999). Practical Nonparametric Statistics, John Wiley, New York.
Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting, The Annals of Statistics, 38:2, 337-374.
Kim, H. and Loh, W.-Y. (2001). Classification trees with unbiased multiway splits, Journal of the American Statistical Association, 96, 589-604.
Landwehr, N., Hall, M., and Frank, E. (2005). Logistic model trees, Machine Learning, 59, 161-205.
Lim, T.-S., Loh, W.-Y. and Shih, Y.-S. (2000). A comparison of prediction accuracy,complexity,and training time of thirty-three old and new classification algorithm, Machine Learning, 40, 203-228.
Loh, W.-Y. and Shih, Y.-S. (1997). Split selection methods for classification trees, Statistica Sinica, 7, 815-840.
Merz, C. and Murphy, P. (1996). UCI Repository of Machine Learning Databases., Department of Information and Computer Science, Univeristy of California, Irvine, CA.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, San Mateo, Morgan Kaufmann.
Witten, I. H., and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed., San Francisco: Morgan Kaufmann.
|