(100.24.209.47) 您好!臺灣時間:2019/08/26 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:蘇毓琇
研究生(外文):Yu-Hsiu Su
論文名稱:牛樟芝利用農桿菌進行基因轉殖系統之研究
論文名稱(外文):Studies on the Agrobacterium Mediated Transformation in Antrodia cinnamomea and the Identification of Transgenic Lines
指導教授:蔡新聲蔡新聲引用關係
指導教授(外文):Hsin-Sheng Tsay
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:95
中文關鍵詞:農桿菌牛樟芝
外文關鍵詞:Antrodia cinnamomeaAgrobacterium tumefaciens
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1398
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:305
  • 收藏至我的研究室書目清單書目收藏:2
牛樟芝,學名為Antrodia cinnamomea,是台灣特有之珍貴藥用真菌,具有抗癌和調節免疫等方面之功能。本試驗希望能藉由農桿菌並配合主動誘變(Activation Tagging Mutagenesis)之方式,進行牛樟芝基因轉殖系統之建立及研究。本試驗利用二元載體(binary vector)之農桿菌品系EHA105以及pTAG-8質體進行牛樟芝基因轉殖。首先針對各種影響轉殖的因子,包括農桿菌濃度、牛樟芝菌絲體重量及成熟期、Acetosyringone ( AS ) 濃度以及共培養時間等因子進行測試。試驗結果顯示0.2 g/ ml 的25天成熟菌絲搭配5X108 cfu/ ml農桿菌液,添加1 mM AS之條件下進行共培養6天,可以獲得較多篩選菌系。
轉殖株的分子鑑定:篩選菌系經聚合酵素連鎖反應確認後,再以南方墨點法做進一步分析,結果顯示有73.3%的轉殖株具有單一拷貝的T-DNA 崁入。在GUS組織染色的分析亦有兩株轉殖菌系呈現藍色反應,而利用plasmid rescue方式也成功分離出4株轉殖菌系的基因體DNA。為確定轉殖菌系是否仍為牛樟芝,本試驗利用18S 核醣體(18S rRNA)基因序列和internal transcribed spacer (ITS) 基因序列,針對食品工業研究所不同品種的牛樟芝菌絲體及本試驗的轉殖細胞系進行牛樟芝分子鑑定;結果顯示不管是18S rRNA 或ITS基因序列,轉殖細胞系和牛樟芝主模式菌株相同度均達到97.5-99%,因此證實轉殖細胞系仍為穩定的牛樟芝菌種。
外觀性狀調查方面:非轉殖菌系與轉殖菌系經測定其生長曲線,發現 15 個轉殖菌系之生長速率明顯下降20 %。而外觀顏色變化之轉殖菌系經HPLC成分分析後,發現外觀顏色變為深紅色之轉殖菌系,其總成分與非轉殖菌系比較有30%成分增加,且與牛樟芝子實體的總成分相當;而白色之轉殖菌系則發現其總含量有40%下降。從HPLC剖面圖發現,有兩個轉殖菌系含有一個成分不同於非轉殖菌系菌絲體,而這個成分則是存在於子實體。上述外觀性狀之改變將有助於後續相關基因功能之研究。
Antrodia cinnamomea is well known in Taiwan, as a source of traditional Chinese medicine for treatment of cancer and inflammation. In the present study, T-DNA Activation Tagging Mutagenesis (ATM) was used to generate transgenic lines of A. cinnamomea. Agrobacterium tumefaciens strain EHA105 harboring a standard binary vector pTAG-8 was used to generate the ATM population. Initially, factors like concentration of Agrobacterium, acetosyringone (AS), age of mycelia, its density and duration of co-culture period were optimized to achieve the maximum transformation efficiency. Results showed that Agrobacterium concentration of 5x108 cfu/ml, 1 mM AS, 25 days old mycelia at 0.2 g/ml and co-cultivation for 6 days were the optimum conditions for the transformation of A. cinnamomea.
Molecular analysis of transgenic lines to confirm transformation was also carried out. After confirmation by PCR, transgenic lines were subjected to Southern blot analysis. Results showed that 73.3% of transformants had single T-DNA insertion. GUS activity was observed in the transformants and the segments of genomic DNA of the transformants flanking the T-DNA from right border could be amplified by plasmid rescue. The identity of transgenic lines of A. cinnamomea was confirmed by first amplification and then sequencing of the 18S ribosome RNA (18S rRNA) and internal transcribed spacer (ITS) regions. Sequence analysis showed that transgenic lines shared 97.5-99% identity to BCRC A. cinnamomea strains.
Growth rate of the transgenic lines was slow. It was observed that 15 transgenic lines showed 20% decrease in growth rates compared to non-transformed mycelia. Color based phenotypic screening of the transgenic lines and analysis of compounds by HPLC was carried out. The white mycelia contained 40% less compounds, while the deep red mycelia had 30% more compounds than the non-transformed original mycelia. Quantities in the later case are almost similar to the quantities detected in fruiting bodies. The compound profile of transgenic mycelia was also similar to the compounds found in fruiting bodies. Interestingly, it was noticed that two transgenic lines had different compound profiles compared to non-transgenic mycelia.
Thus, in the present study, we have optimized a protocol for Agrobacterium tumefaciens-mediated transformation of A. cinnamomea, developed transgenic lines having levels of compounds similar to fruiting bodies, and also isolated two transgenic lines with different compound profiles.
Chinese abstract…………………………………………………………………I
Abstract …………………………………………………………………….......III
誌謝......................................................................................................................V
Chapter 1. Introduction……………………………………………………..…1
Chapter 2. Literature Review
1. Introduction - Antrodia cinnamomea…………………………………........3
(1) Taxonomy………………………………………………………………..3
(2) Characteristics and distribution………………………………………….4
(3) Basidomycete life cycle………………………………………………....4
(4) Bioactive compounds and its functions………………………………....5
(5) The constraint- non-availability of sufficient quantities of fruiting bodies…………………………………………………………………..8
2. Transformation of fungi…………………………………………………….8
3. Methods for transformation of fungi………………………………………..9
(1) CaCl2/polyethylene glycol (PEG) method………………………………9
(2) Electroporation………………………………………………………….10
(3) Particle bombardment (Biolistic) method………………………………10
(4) Restriction enzyme mediated integration (REMI)……………………...11
(5) Agrobacterium tumefaciens mediated transformation (ATMT)………..12
4. Factors influencing ATMT efficiency in fungi…………………………….14
(1) Starting materials……………………………………………………….14
(2) Agrobacterium and the host strain……………………………………...15
(3) Acetosyringone concentration………………………………………….16
(4) Co-cultivation conditions…………………………………....................17
5. Research on activation tagging…………………………………………….18
(1) Gene function – Introduction…………………………………………...18
(2) Mutation approach to gene function……………………………………18
(3) Activation tagging - the principle and advantages …………………......21
(4) Activation tagging- its applications…………………………………….22
Chapter 3. Materials and Methods
1. Antrodia cinnamomea strains……………………………………………..25
2. Mycelia culture conditions………………………………………………..25
3. Plasmid construction……………………………………………………....26
4. Preparation of competent cells …………………………………………....26
5. Transformation of E.coli and Agrobacterium...............................................27
6. Solid and liquid cultures of E. coli and Agrobacterium……………………27
(1) E. coli culture……………………………………………………………27
(2) Agrobacterium culture…………………………………………………..28
7. Preservation of the strains………………………………………………….28
8. Plasmid extraction………………………………………………………….28
9. Primer design ………………………………………………………………29
10. Plasmid identification…………………………………………………........29
11. Agrobacterium-mediated transformation ………………………………. ...30
(1) Lethal concentration of antibiotics for selection of A. cinnamomea ......30
(2) The optimum Agrobacterium concentration ……………………….. …30
(3) Co-cultivation and selection………………………………………… ...31
12. Genomic DNA extraction…………………………………………….. ….32
13. PCR analysis of transgenic lines………………………………………….33
14. Southern blot analysis…………………………………………………….33
(1) Preparation of non-radioactive labeled probe………………………….33
(2) Digestion and precipitation of genomic DNA…………………………34
(3) Gel electrophoresis and transfer of genomic DNA…………………….34
(4) Hybridization and detection……………………………………............35
15. GUS assay…………………………………………………………...........36
16. Plasmid rescue……………………………………………………............36
(1) Restriction digestion……………………………………………...........36
(2) Ligation…………………………………………………………….......37
(3) Electroporation…………………………………………………………38
17. Identification of A. cinnamomea strains…………………………….........39
(1) Primers design of 18 rRNA and ITS…………………………………...39
(2) PCR assay………………………………………………………………39
(3) T-A cloning…………………………………………………….............40
(4) Transformation-ligation reactions……………………………………...40
(5) Sequence determination and identity analysis…………………….........41
18. Growth model of A. cinnamomea mycelia…………………………..........41
19. Relative growth rate of transgenic lines …………………………….........41
20. Analysis of secondary metabolites ……………………………………….41
(1)Materials……………………………………………………………........41
(2) Equipment……………………………………………………………….42
(3) Preparation of extracts…………………………………………..............42
(4) HPLC analysis…………………………………………………..............43
21. Data analysis……………………………………………………...............43
Chapter 4. Results
1. PCR amplification of selection and reporter genes in
Agrobacterium strain………………………………………………….........44
2. Optimization of conditions for A. cinnamomea transformation……………44
(1) Lethal concentration of antibiotics for selection of A. cinnamomea.........44
(2) Influence of different factors on transformation efficiency………..........45
3. Molecular analysis of transgenic lines …………………………………….46
(1) Identification of T-DNA integration in transgenic lines ………………...46
A. PCR assays………………………………………………………….…46
B. Southern blot analysis………………………………………………….46
C. GUS assay……………………………………………………………...46
D. Plasmid rescue technique………………………………………...........47
(2) Identification of transgenic lines and A. cinnamomea strains…………...47
4. Phenotypic screening, qualitative and quantitative analysis of bioactive compounds ………………………………………………………………...47
(1) Colony color……………………………………………………..............47
(2) Relative growth rates of A. cinnamomea transgenic lines ………………48
(3) Analysis of bioactive compounds or secondary metabolites…………….48
Chapter 5. Discussion…………………………………………………….......50
References ……………………………………………………………..............57
Figures………………………………………………………………………….72
Tables ………………………………………………………………………….88
Appendix……………………………………………………………………….90
References

李學勇(Li, S. J),基礎植物學。台北市 國立編譯館 (1990).

Abuodeh, R.O., Orbach, M.J., Mandel, M.A., Das, A., and Galgiani, J.N., “Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens,” J Infect Dis, Vol. 181, pp. 2106-2110 (2000).

Bader GD, Heilbut A, Andrews B, Tyers M, Hughes T, Boone C., “ Functional genomics and proteomics: charting a multidimensional map of the yeast cell,” Trends Cell Biol, Vol. 13, pp. 344-356 (2003).

Balhadère, P. V., Foster, A. J., and Talbot, N. J., “ Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis,” Mol. Plant-Microbe Interact, Vol. 12, pp. 129-142 (1999).

Balzergue, S., Dubreucq, B., Chauvin, S., Le-Clainche, I., Le Boulaire, F., de Rose, R., Samson, F., Biaudet, V., Lecharny, A., Cruaud, C., Weissenbach, J., Caboche, M., and Lepiniec, L., “Improved PCR-walking for large-scale isolation of plant T-DNA borders,” Biotechniques, Vol. 30, pp. 496-504 (2001).

Bellen, H.J., “Ten years of enhancer detection: lessons from the fly,” Plant Cell, Vol. 11, pp. 2271-2281 (1999).

Bolker, M., Bohnert, H.U., Braun, K.H., Gorl, J., and Kahmann, R. “Tagged pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI),” Mol. Gen. Gene.t, Vol. 248, pp.47-55 (1995).

Borevitz, J. O., Xia, Y., Blount, J., Dixon, R.A., and Lamb, C., “Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis,” Plant Cell, Vol. 12, pp. 2383-2393 (2000).

Brown, J. S., and Holden, D.W., ”Insertional mutagenesis of pathogenic fungi,” Curr. Opin. Microbiol., Vol. 1, pp. 390-394 (1998).

Bundock, P., Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J., “Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae,” EMBO J, Vol. 14, pp. 3206-3214 (1995).

Bundock, P., Mroczek, K., Winkler, A.A., Steensma, H.Y., and Hooykaas, P.J., “T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis,” Mol Gen Genet, Vol.261, pp.115-121 (1999).

Bundock, P., van Attikum, H., Dulk-Ras, A., and Hooykaas, P.J., “ Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens,” Yeast, Vol. 19, pp. 529-536 (2002).

Campoy, S., Perez, F., Martin, J.F., Gutierrez, S., and Liras, P., “Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium- mediated DNA transfer,” Curr. Genet., Vol. 43, pp. 447-452 (2003).

Cangelosi, G. A., Ankenbauer, R.G., and Nester, E.W., “Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein,” Proc. Nat.l Aca. Sci. USA, Vol. 87, pp. 6708-6712 (1990).

Caroline, B., Michielse, A., Paul, J. J., Hooykaas, Cees A. M. J. J. van den Hondel, A., and Arthur F. J. Ram, ”Agrobacterium -mediated transformation as a tool or functional genomics in fungi,” Curr. Genet., Vol. 48, pp. 1–17 (2005).

Casas-Flores, S., Rosales-Saavedra, T., and Herrera-Estrella, A.,” Three Decades of Fungal Transformation,” Methods in Molecular Biology, Vol. 267, pp. 315-325 (2003).

Chakraborty, B. N., Patterson, N. A., and Kapoor, M., “An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi,” Canadian Journal of Microbiology, Vol. 37, pp. 858-863 (1991).

Chang, T. T., and Chou, W. N., “Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan,” Mycol. Res., Vol. 99, pp. 756-758 (1995).

Chang, W. T., Gross, J. D., Newell, P.C., “Trapping developmental promoters in Dictyostelium,” Plasmid, Vol. 34, pp. 175-183 (1995).

Chang, T., Chou, W., “Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan,” Bot. Bull. Acad. Sin., Vol.45, pp. 347-352 (2004).

Chang, T. T., and Wang, W. R.,” Basidiomatal formation of Antrodia cinnamomea on artificial agar media,” Bot. Bull. Acad. Sin., Vol.46, pp. 151-154 (2005).

Chang, Y. H., “Molecular systematics of Anthodia camphorata,” Master Thesis, Institute of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, (2002).

Chen, W., Hoy, J. W., and Schneider, R. W., “Species-specific polymorphisms in transcribed ribosomal DNA of five Pythium species,” Exper. Mycol., Vol. 16, pp. 22-34 (1992).

Chen, C., Yang, S., and Shen, Y., “ New steroid acids from Anthodia cinnamomea, a fungal parasite of Cinnamomum micranthum,” J. Nat. Pro., Vol. 58, pp. 1655-1661 (1995).

Chen, X., Stone, M., Schlagnhaufer, C., Romaine, C. P., “A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus,” Appl. Envirn. Microbiol., Vol. 66, pp. 4510-4513 (2000).
Chen, C.-J., Su, C.-H., and Lan, M.-H., “Study on solid culture and bioactivity of Antrodia camphorate,” Fungal Science, Vol. 16, No.1, (2001).

Cherng, I. H., and Chiang, H. C., “Three new triterpenoids from antrodia cinnamomea,” J. Nat. Prod., Vol. 58, pp.365-371 (1995).

Cherng, I. H., Wu, D. P., and Chiang, H. C., “Triterpenoids from antrodia cinnamomea,” Phytochemistry, Vol. 41, pp. 263-267 (1996).

Chiang, H. C., Wu, D., Cherng, I. W., and Ueng, C. H., “A sesquiterpene lactone, phenyl and biphenyl compounds from antrodia cinnamomea,” Phytochemistry, Vol.39, pp. 613- 616 (1995).

Christie, P. J., “Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria,” J Bacteriol, Vol. 179, pp. 3085-3094 (1997).

Chuang, C. F., and Meyerowitz, E. M., “Specific and heritable genetic interference by double-strand RNA in Arabidopsis thaliana,” Proc. Natl. Acad. Sci., USA Vol. 97, pp. 4985-4990 (2000).

Combier, J. P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R., “ Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum,” FEMS Microbiol Lett., Vol. 220, pp. 41-148 (2003).

Covert, S. F., Kapoor, P., Lee, M., Briley, A., and Nairn, C. J., “ Agrobacterium- mediated transformation of Fusarium circinatum, Mycol. Res.,” Vol. 10, pp. 259-264 (2001).

Cvitanich, C., Judelson, H. S., “Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment,” Curr. Genet., Vol. 42, pp. 228-235 (2003).

Degefu,Y., and Hanif, M., “Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leafblight fungus,” Arch Microbiol,Vol.180, pp. 279-284 (2003).

Fits, L., Hilliou, F., and Memelink, J., “T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species,” Transgenic Research, Vol. 10, pp. 513-521 (2001).

Fitzgerald, A. M., Mudge, A. M., Gleave, A. P., and Plummer, K. M., “Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis,” Mycol. Res., Vol. 107, pp. 803-810 (2003).

Fobert, P. R., Miki, B. L., Iyer, V. N., “Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions,” Plant Mol. Biol., Vol. 17, pp. 837-851 (1991).
Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D., and Taylor, J. W., “Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA,” Canadian J. Bot., Vol. 69, pp. 180-190 (1991).

Gardiner, D. M., and Howlett, B. J., “ Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans,” Curr. Genet., Vol.45, pp. 249-255 (2004).

Gisela, A. van der Doelen, Klaas, Jan van den Berg, Jaap, J. B., Nobuko S., E. Rene de la Rie, and Wim, J., Genuit, L.,”Analysis of fresh triterpenoid resins and aged triterpenoid varnishes by high-performance liquid chromatography – atmospheric pressure chemical ionization (tandem) mass spectrometry,” J. Chroma. A., Vol. 809, pp. 21-37 (1998).

Gomes-Barcellos, F., Pelegrinelli-Fungaro, M. H., Furlaneto, M .C., Lejeune, B., Pizzirani-Kleiner, A. A., and Azevedo, J. L., “Genetic analysis of Aspergillus nidulans unstable transformants obtained by the biolistic process,” Canadian Journal of Microbiology, Vol. 44, pp. 1137-1141 (1998).

Gossler, A., Joyner, A. L., Rossant, J., Skarnes, W. C., “Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes,” Science, Vol. 244, pp. 463-465 (1989).

Grant, J. J., Chini, A., Basu, D., Loake, G. J., “Targeted activation tagging of ADR1, a NBS-LRR gene, conveys resistance to virulent pathogens,” Mol. Plant Microbe. Interact, Vol.16, pp. 669-680 (2003).

Groot, M. J. de, Bundock, P., Hooykaas, P. J., and Beijersbergen, A. G., “Agrobacterium tumefaciens-mediated transformation of filamentous fung”, Nat Biotechnol, Vol. 16, pp. 839-842 (1998).

Gu, Z, Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R.W., and Li, W-H., “Role duplicate genes in genetic robustness against null mutations,” Nature, Vol. 421, pp. 63-66 (2003).

Hanley, S. D. Edwards, D., Stevenson, S., Haines, M., Hegarty, W., Schuch, K., and Edwards, J., “Identification of transposon-tagged genes by the random sequencing of mutator-tagged DNA fragments from Zea mays,” Plant J, Vol. 23, pp. 557-566 (2000).

Hawksworth, D. L., Kirk, P. M., Sutton, B. C., and Pegler, D. N., “Dictionary of the fungi,” International Mycological Institute, (1996).

Hayashi, H., Czaja, I., Lubenow, H., Schell, J., and Walden, R., “Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro,” Science, Vol. 258, pp. 1350-1353 (1992).

Holtorf, H., Guitton, M. C., and Reski, R., “Plant functional genomics,” Naturwissenschaften, Vol. 89, pp. 235-249 (2002).

Hseu, Y. C., Yang, H. L., Lai, Y. C., Lin, J., G., Chen, G. W., and Chang, J. H., “Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells,” Nutr. Cancer, Vol.48, pp. 189-197 (2004).

Hsu, Y. L., Kuo, Y. C., Kuo, P. L., Ng, L. T., Kuo, Y. H., and Lin, C. C., “Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines,” Cancer Letters, Vol. 22, pp. 177-89 (2005).

HuaVan A., Hericourt, F., Capy, F., Daboussi, M. J. and Langin, T., “Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporum,” Mol. Gen. Genet, Vol. 259, pp. 354-362 (1998).

Huang, L.C., “Antioxidant properties and polysaccharide composition analysis of Antrodia camphorata and Agaricus blazei,” Master Thesis, National Chung-Hsing University, Taichung, Taiwan, pp. 63-76 (2000).

Huang, N., Cheng, J., Lai, W., and Lu, M., “Antrodia camphorata prevents rat pheochromocytoma cells from serum deprivation-induced apoptosis,” FEMS Micro. Lett., Vol. 244, pp. 213-219 (2005).

Hutchinson, H. T., and Hartwell, L. H., “Macromolecule synthesis in yeast spheroplasts,” J. Bacteriol, Vol. 94, pp.1697-1705 (1967).

Ito, T., and Meyerowitz, E.M., “Overexpression of a gene encoding a cytochromeP450, CYP78A9, induces large and seed-less fruit in Arabidopsis,” Plant Cell, Vol. 12, pp. 1541-1550 (2000).

Jensen, P.R., and Fenical, W., “Secondary metabolites from marine fungi. In: Hyde KD (ed) Fungi in Marine Environment,” Fungal Diversity Research Series, Vol. 7, pp. 293-315 (2002).

Jeon, J.-S., Lee, S., Jung, K.-H., Jun, S.-H., Jeong, D.-H., Lee, J., Kim, C., Jang, S., Lee, S., Yang, K., Nam, J., An, K., Han, M.-J., Sung, R.-J., Choi, H.-S., Yu, J.-H., Choi, J.-H., Cho, S.-Y., Cha, S.-S., Kim, S.-I., and An, G., ”T-DNA insertional mutagenesis for functional genomics in rice,” Plant J , Vol. 22, pp.561-570 (2000).

Jin, S., Prusti, R. K., Roitsch, T., Ankenbauer, R. G.., and Nester, E. W., “The VirG protein of Agrobacterium tumefaciens is phosphorylated by the autophosphorylated VirA protein and this is essential for its biological activity,” J.Bacter., Vol. 172, pp. 4945-4950 (1990a).

Jin, S., Roitsch, T., Christie, P. J., and Nester, E. W., ” The regulatory VirG protein specifically binds to a cis acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes,” J.Bacter., Vol. 172, pp. 531-562 (1990b).

Kahmann, R., and Basse, C., “REMI (Restriction Enzyme Mediated Integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants,” Eur. J. Plant Pathol., Vol.105, pp. 221-229 (1999).

Kakimoto, T., “CKI1, a histidine kinasehomolog implicated in cytokinin signal transduction,’ Science, Vol. 274, pp. 982-985 (1996).

Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., Chory, J., Harrison, M. J., and Weigel, D., “Activation tagging of the floral inducer FT,” Science, Vol. 286, pp. 1962-1965 (1999).

Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C., “High velocity microprojectiles for delivering nucleic acids into living cells,” Nature, Vol. 327, pp. 70-73 (1987).

Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei G. P., and Schell, J., “ High-frequency T-DNAmediated gene tagging in plants,” Proc Natl Acad Sci USA, Vol. 86, pp. 8467-8471 (1989).

Koncz, C., Nemeth, K., Redei, G. P., and Schell, J., “T-DNA insertional mutagenesis in Arabidopsis,” Plant Mol Biol, Vol. 20, pp. 963-976 (1992).

Krysan, P. J., Young, J. C., and Sussman, M. R., “T-DNA as an insertional mutagen in Arabidopsis,” Plant Cell, Vol.11, pp. 2283-2290 (1999).

Kwon-Chung, K. J., Goldman, W. E., Klein, B. and Szaniszlo, P. J., “Fate of transforming DNA in pathogenic fungi,” Medical Mycology, Vol. 36, pp. 38-44 (1998).

Leclerque, A., Wan, H., Abschutz, A., Chen, S., Mitina, G. V., Zimmermann, G., and Schairer, H. U., “ Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana,” Curr Genet, Vol. 45, pp. 111-119 (2003).

Lee, I., Huang, R., Chen, C., Chen, H., Hsu, W., and Lu, M.,. “Anthodia camphorata polysaccharides exhibit anti-hepatitis B virus effects,” FEMS Micro. Let., Vol. 209, pp. 63-67 (2002).

Li, M. Xiaoyan, G., Jin, Z., Daohong, J., Yanping, F., and Mingsheng, H., “Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens,” FEMS Micro.Let., Vol. 243, pp. 323-329 (2005).

Li, J., Lease, K. A., Tax, F. E., Walker, J. C., “BRS1, a serine carboxypepetidase, regulates BRI1 signalling in Arabidopsis thaliana,” Proc Natl Acad Sci USA, Vol. 98, pp. 5916-5921 (2001).

Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, E., Walker, J. C., “BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling,” Cell, Vol.110, pp. 213-222 (2002).

Linnemannstons, P., Vob, T., Hedden, P., Gaskin, P., and Tudzynski, B., “Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis,” Appl Environ Microbiol , Vol. 65, pp. 2558-2564 (1999).

Liu, J. J., Huang, T. S., Hsu, M. L., Chen, C. C., Lin, W. S., Lu, F. J., and Chang, W. H., “Antitumor effects of the partially purified polysaccharides from Anthodia camphorata and the mechanism of its action,” Toxicol. Appl. Pharm., Vol.201, pp. 186-193 (2004).

Liu,Y.-G., Whittier, R., “Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking,” Genomics, Vol. 25, pp. 674-681 (1995).

Lu, S., Lyngholm, L., Yang, G., Bronson, C., Yoder, O. C. and Turgen, B. G., “Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration,” Proc. Natl. Acad. Sci. USA, Vol. 91, pp. 12649-12653 (1994).

Maier, F. J., and Schafer, W., “Mutagenesis via insertionalor restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi,” Biol. Chem, Vol. 380, pp. 855-864 (1999).

Meyer, V., Mueller, D., Strowig, T., and Stahl, U., “Comparison of different transformation methods for Aspergillus giganteus,” Curr. Genet., Vol. 43, pp. 371-377 (2003).

Michielse, C. B., Ram, A. F. J., Hooykaas, P. J. J., and Hondel, C. A. M. J. J. van den, “Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full length VirD2, VirC2 or VirE2 leads to insertion of aberrant T-DNA structures,” J Bacteriol, Vol. 186, pp. 2038-2045 (2004a).

Michielse, C. B., Ram, A. F. J., Hooykaas, P. J. J., Hondel, and C. A. M. J. J. van den, “Role of bacterial virulence proteins in Agrobacterium mediated transformation of Aspergillus awamori,” Fungal Genet .Biol., Vol. 45, pp. 571-578 (2004b).

Michielse, C. B., Arentshorst, M., Ram, A. F. J., and Hondel, C. A. M. J. J. van den, “Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori,” Fungal Genet Biol, Vol. 42, pp. 9-19 (2005).

Michielse, C. B., Hooykaas P. J. J., van den, Hondel, C .A. M. J. J., and Ram, A. F. J., “Agrobacterium-mediated transformation as a tool for functional
genomics in fung,” Curr Genet, Vol. 48, pp. 1-17 ( 2005).

Miklos, G. L., Rubin, G. M., “The role of the genome project in determining gene function: insights from model organisms,” Cell, Vol. 86, pp. 521-529 (1996).

Mikosch, T. S., Lavrijssen, B., Sonnenberg, A. S., and Griensven, L. J. van, “Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens,” Curr Genet, Vol. 39, pp. 35-39 (2001).

Mishra, N. C., and Tatum, E. L., ”Non-Mendelian inheritance of DNA-mediated inositol independence in Neurospora,” Proc. Natl. Acad. Sci. USA, Vol. 70, pp. 3875-3879 (1973).

Moers, M. E. C., Jones, D. M., Eakin, P. A., Fallick, A. E., Grifths, H. and Larter, S. R., “Carbohydrate diagenesis in hypersaline environments: application of GC-IRMS to the stable isotope analysis of derivatized saccharides from surficial and buried sediments,” Org. Geochem, Vol. 20, pp. 927-933 (1993).

Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., and Kang, S., “Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer,” Phytopathology, Vol. 91, pp. 173-180 (2001).

Mullins, E. D. and S. Kang., “Transformation: a tool for studying fungal pathogens of plants,” Cell. Mol. Life Sci., Vol. 58, pp. 2043-2052 (2001).

Nakazawa, M.,Yabe,N., Ichikawa, T., Yamamoto, Y. Y., Yoshizumi, T., Hasunuma, K., and Matsui, M., “DFL1, an auxin-respon-sive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length,” Plant J., Vol. 25, pp. 213-221 (2001).

Nakazawa1, M., Ichikawa1, T., Ishikawa1, A., Kobayashi1, H., Tsuhara1, Y., Kawashima1, M., Suzuki1, K., Muto, S., and Minami M., “Activation tagging, a novel tool to dissect the functions of a gene family,’ The Plant Journal, Vol. 34, pp. 741-750 (2003).

Nakamura, N., Hirakawa, A., Gao, J. J., Kakuda, H., Shiro, M. Y., and Komatsu, et al., “Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line,” J. Nat. Prod., Vol. 67, pp. 46-48 (2004).

Neff, M. M., Nguyen, S. M., Malancharuvil, E. J., Fujioka, S., Noguchi, T., Seto, H.,Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., and Chory, J., “BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis,” Proc Natl Acad Sci USA, Vol. 96, pp. 15316-15123 (1999).

Nguyen, S. Sato, Z. Y. Wang, Y., Xia, R. A., Dixon, M. J., Harrison, C. J., Lamb, M., Yanofsky, F., Chory, J., “Activation tagging in Arabidopsis,” Plant Physiol., Vol. 122, pp. 1003-1013 (2000).

Parinov, S., and Sundaresan, V., “Functional genomics in Arabidopsis : large-scale insertional mutagenesis complements the genome sequencing project,” Curr. Opin. Biotechnol., Vol. 11, pp. 157-161 (2000).

Piers, K. L., Heath, J. D., Liang, X., Stephens, K. M., and Nester, E. W., “Agrobacterium tumefaciens-mediated transformation of yeast,” Proc. Nat.l Acad. Sci. USA, Vol. 93, pp. 1613-1618 (1996).

Qin, G., Kang, D., Dong, Y., Shen, Y., Zhang, Li, Deng, X., Zhang, Y., Li, S., Chen, N., Niu, W., Chen, C., Liu, P., Chen, H., Li, J., Ren, Y., Gu, H., Deng, X., Qu, L.-J., and Chen, Z., “Obtaining and analysis of flanking sequences from T-DNA transformants of Arabidopsis,” Plant Science, Vol. 165, pp. 941-949 (2003).

Retallack, D. M., Deepe, G. S., Woods, J. P., “Applying in vivo expression technology (IVET) to the fungal pathogen Histoplasma capsulatum,” Microbial Pathogenesis, Vol. 28, pp. 169-182 (2000).

Rho, H. S., Kang, S., and Lee, Y. H., “Agrobacterium tumefaciens mediated transformation of the plant pathogenic fungus, Magnaporthe grisea,” Mol Cells, Vol. 12, pp. 407-411 (2001).

Riach, M. B. R. and Kinghorn, J. R., “Genetic transformation and vector developments in filamentous fung,”. In Fungal Genetics: Principles and Practice ed,” Bos, C.J. pp. 209-233 (1996). New York: Marcel Dekker Inc

Robert, A. MARTIENSSEN, “Functional genomics: Probing plant gene function and expression with transposons,” Proc. Natl. Acad. Sci. USA Vol. 95, pp. 2021-2026 (1998).

Rolland, S., Jobic, C., Fevre, M.,and Bruel, C., “ Agrobacterium mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences,” Curr. Genet., Vol. 44, pp. 64-171 (2003).

Ross-Macdonald et al “Large-scale analysis of the yeast genome by transposon tagging and gene disruption,” Nature, Vol. 402, pp. 413-418 (1999).

Schiestl, R. H. and Petes T. D., “Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae,” Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 7585-7589 (1991).

Schneider A., Kirch, T., Gigolashvili, T., Mock, H. P., Sonnewald, U., Simon, R., Flugge, U. I., and Werr, W., “A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations,” FEMS Lett., Vol. 579, pp. 4622-4628 (2005).

Shen, Y. C., Yang, S. W., Lin, C. S., Chen, C. H., Kuo, Y. H., and Chen, C. F., “ Zhankuic acid F: a new metabolite from a formosan fungus Antrodia cinnamomea,” Planta Medica, Vol. 63, pp. 86-88 (1997).

Shen, C. C.,Kuo, Y. C., Huang, R. L., Lin, L. C., Dong, M. J., Chang, T. T., and Chou, C. J., ”New ergostane and lanostane from Antrodia camphorate,” J.Chin.Med., Vol.14, pp. 247-258 (2003).

Shen, Y. C., Wang, Y. H., Chou, Y. C., Chen, C. F., Lin, L. C., Chang, T. T., Tien, J. H., and Chiu, C. J., “Evaluation of the Anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorate,” Planta. Med., Vol. 70, pp. 310-314 (2004).

Shen, Y. C., Chou, C. J., Wang, Y. H., Chen, C. F., Chou, Y. C., Lu, M. K., “Anti-inflammatory activity of the extracts from mycelia of cultured with water-soluble fractions from five different Cinnamomum species,” FEMS Microbiol. Lett., Vol. 231, pp. 137-143 (2004).

Song, T. Y., and Yen, G. C., “Antioxidant properties of Antrodia camphorata in submerged culture,” J. Agric. Food Chem., Vol. 50, pp. 3322-3327 (2002).

Stafford, H. A., “Crown gall disease and Agrobacterium tumefaciens: a study of the history, present knowledge, missing information, and impact on molecular genetics,” Bot Rev, Vol. 66, pp. 101-118 (2000).

Sullivan, T. D., Rooney, P. J., and Klein, B. S., “Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast,” Eukaryot Cell, Vol. 1, pp. 895-905 (2002).

Sulston et al “The Caenorhabditis elegans genome sequence project: a beginning,” Nature Vol. 356, pp. 37–41 (1992).

Sweigard J. A., Carroll A. M., Farrall L., Chumley F. G. and Valent B., “Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis,” Mol. Plant-Microbe Interact. Vol. 11, pp. 404-412 (1998).

Takahara, H., Tsuji, G., Kubo, Y., Yamamoto, M., Toyoda, K., Inagaki, Y., Ichinose, Y., and Shiraishi, T., “Agrobacterium tumefaciens mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii,” J. Gen. Plan.t Pathol., Vol. 70, pp. 93-96 (2004).

Tani, H., Xinwei, C., Pedro, N., John, J. G., Marjorie, S., Andrea, C., Eleanor, G., Paul, R. J. B., Gary, J. L., “Activation tagging in plants: a tool for gene discovery,” Funct. Integr. Genomics, Vol. 4, pp. 258-266 (2004).

Thon, M. R., Nuckles, E. M., and Vaillancourt, L. J., “ Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola,” Mol. Plant- Microbe Interact, Vol. 13, pp. 1356-1365 (2000).

Triglia, T. M., Peterson, G., Kemp, D. J., “A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences,” Nucleic Acids Res., Vol. 16, pp. 81-86 (1988).

Tsai, Z., Liaw, S.,” The Use and the Effect of Ganoderma,” San Yun Press, Taichung, Taiwan, pp. 116-117 (1985).

Vijn, I., and Govers, F., “ Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans,” Mol. Plant. Pathol., Vol. 4, pp. 459-467 (2003).

Villaba, F., Lebrun, M. H., HuaVan A., Daboussi, M. J. and Grosjean-Cournoyer, M. C., “ Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea,” Mol. Plant-Microbe Interact, Vol. 14, pp. 308-315 (2001).

Walbot, V., “Saturation mutagenesis using maize transposons,” Curr. Opin. Plant Biol. Vol. 3, pp. 103-107 (2000).

Wang, G., Tseng, H., Chou, C., Tsai, T., Chen, C., and Lu, M., “The vasorelaxation of Antrodia camphorata mycelia: involvement of endothelial Ca2+ –NO–cGMP pathway,” Life Sci. Vol. 73, pp. 2769-2783 (2003).

Wu, S.H., Ryvarden, L., and Chang, T. T.,” Anthodia camphoratum (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan,” Bot. Bull. Acad. Sin., Vol. 38, pp. 273-275 (1997).

Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R.A., Lamb, C., “An extracellular aspartic protease functions in Arabidopsis disease resistance signaling,’ EMBO J., Vol. 23, pp. 980-988 (2004).

Yang, S.W., Shen, Y.C., and Chen, C.H., “Steroids and triterpenoids of antrodia cinnamomea-fungus parasitic on cinnamomum micranthum,” Phytochemistry, Vol. 41, pp. 1389-1392 (1996).
Zang, M., and Su, C.H., “Ganoderma comphoratum, a new taxon in genus Ganoderma from Taiwan,” China. Acta. Bot. Yunnanica, Vol. 12, pp. 395-396 (1990).
Zhao, Y, Christensen, S. K., Frankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D., Chory, J., “A role for flavin monooxygenaselike enzymes in auxin biosynthesis,” Science, Vol. 291, pp. 306-309 (2001).

Zhu, J., Oger, P. M., Schrammeijer, B., Hooykaas, P. J., Farrand, S. K., and Winans, S. C., “The bases of crown gall tumorigenesis,” J Bacteriol, Vol. 182, pp.3885-3895 (2000).

Zupan, J., Muth, T. R., Draper, O., and Zambryski, P., “The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights,” Plant J, Vol. 23, pp. 11-28 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔