跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王怡華
研究生(外文):Yi-Hua Wang
論文名稱:利用穿透式電子顯微鏡(TEM)及示差掃描熱分析儀(DSC)探討Zr60Al7.5Ni10Cu17.5Si4B1合金之結晶動力學
論文名稱(外文):Crystallization Kinetics Study of Zr60Al7.5Ni10Cu17.5Si4B1 Alloy by TEM and DSC
指導教授:鄭憲清
指導教授(外文):Jason S. C. Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:熱性質分析微觀組織非晶質合金
外文關鍵詞:microstructureamorphous alloythermal analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:755
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因前人研究中指出,添加4at.%Si、1at.%B之鋯基非晶質具有高熱穩定性,其結晶活化能高達390kJ/mole,同時鋯基非晶質合金具有寬廣過冷區(~80K)、高玻璃形成能力及良好的機械性質,故本實驗以Zr60Al7.5Ni10Cu17.5Si4B1非晶質合金作為研究主題,藉由示差掃描熱分析儀(DSC)進行等速率升溫與恆溫退火測試及結合穿透式電子顯微鏡(TEM)之解析以深入探討該合金之結晶成核與成長機制。

由實驗之結果顯示,在非恆溫分析法中Zr60Al7.5Ni10Cu17.5Si4B1與Zr65Al7.5Ni10Cu12.5Si4B1之n值皆隨溫度升高而降低,其值介於4~2之間,即表示結晶初期是以三度空間成長,隨溫度與時間的增加,轉變成二度或一度空間成長。且Zr60Al7.5Ni10Cu17.5Si4B1合金晶核飽和點約為88%、Zr65Al7.5Ni10Cu12.5Si4B1合金約為87%、Zr61Al7.5Ni10Cu17.5Si4合金約為64%及Zr65Al7.5Ni10Cu17.5合金約為47%,即表示添加4 at.%矽、1 at.%硼之鋯基非晶質合金中晶核成長所需的能量較高,其熱穩定性較佳。

在XRD及TEM之微結構分析觀察可知,在714K,恆溫退火熱處理後之試片,Zr2Cu結晶相在低溫及結晶初期(<1%結晶率)時最先出現,隨著恆溫退火時間的增加依序有Zr2Ni、Zr3Al及Zr3Al2結晶相的生成(35%結晶率),當恆溫退火試片達到71%結晶率時除了先前產生之結晶相外,還有ZrNi2Al結晶相的生成,最後,在完全結晶之試片上析出Zr2Si結晶相。

在STEM line scan成分分析上,714K恆溫退火3000秒(71%結晶率)之Zr60Al7.5Ni10Cu17.5Si4B1合金試片,可發現Si會聚集在晶粒邊緣,阻礙了其他原子(Zr、Cu、Al、Ni)之擴散至Zr2Cu晶粒與非晶基地界面,因而阻礙晶粒的成長。在足夠之恆溫退火時間(714K恆溫退火4小時,100%結晶率)後,含量較少之Si元素與Zr產生結合,產生Zr2Si結晶相。

TEM觀察中發現,當Zr60Al7.5Ni10Cu17.5Si4B1合金在714K恆溫退火之試片,Zr2Cu結晶相在低溫及結晶初期(<1%結晶率)時晶粒大小約5nm,隨著退火時間的增加(約71%結晶率)時,Zr2Cu結晶相之晶粒大小可達到約25nm。將晶粒大小計算後可發現,Zr2Cu晶粒大小在三次方時與退火時間呈線性關係,即表示晶粒成長是呈三次元方位。並計算其結晶成長動力學發現其成長活化能約為210±25kJ/mole,高於Zr65Al7.5Ni10Cu17.5合金之晶粒成長活化能(100 ± 10 kJ/mole), 此結果顯示Si的添加會阻礙Zr2Cu相之成長,使Zr60Al7.5Ni10Cu17.5Si4B1合金成長需要較大之能量,即表示Zr60Al7.5Ni10Cu17.5Si4B1合金擁有熱穩定性較佳。
According to the study of Jang’s group, the Zr60Al7.5Ni10Cu17.5Si4B1 amorphous alloy presents 390 kJ/mole high activation energy of crystallization, relatively wide supercooled liquid region (~ 80 K), high glass forming ability and high hardness. Therefore, the Zr60Al7.5Ni10Cu17.5Si4B1 amorphous alloy was selected to investigate its crystallization kinetics and thermal stability in this study. The crystallization behavior and microstructure development during isothermal annealing were examined by the DSC, X-ray diffractometry and TEM techniques with nano beam capability.

The result of non-isothermal DSC analysis revealed that a decreasing trend of Avrami n values, from 4 to 2, with temperature and crystallization ratio for both of Zr60Al7.5Ni10Cu17.5Si4B1 and Zr65Al7.5Ni10Cu12.5Si4B1 amorphous alloys. This implies that three dimensional crystal growth occurs at the early stage of crystallization, and the crystal growth would change to two or even one dimensional growth as increasing the temperature and crystallization fraction. In addition, the transition point between nucleation and crystal growth occurs at about 88% and 87% crystallization ratio for Zr60Al7.5Ni10Cu17.5Si4B1 and Zr65Al7.5Ni10Cu12.5Si4B1 alloy, respectively. These values are much higher than 64% and 47% crystallization ratio for Zr65Al7.5Ni10Cu17.5Si4 and Zr65Al7.5Ni10Cu17.5 alloy, respectively, and demonstrate the positive effect on improving the thermal stability of Zr based amorphous alloy by adding at.% silicon and 1 at.% boron.

TEM observation of the isothermal annealed Zr60Al7.5Ni10Cu17.5Si4B1 samples at 714 K explored that a sequence of different crystalline phase crystallized from the amorphous matrix step by step. The Zr2Cu crystal was observed at the beginning of isothermal annealing (corresponding to % crystallization). As increasing annealing time, the Zr2Ni, Zr3Al and Zr3Al2 crystals were found at the % crystallization. After then, the ZrNi2Al crystal was observed at 71% crystallization. Finally, the Zr2Si was crystallized after fully crystallization condition.

The line scan analysis of STEM on the Zr60Al7.5Ni10Cu17.5Si4B1 sample (which was isothermally annealed at 714K for 3000s and corresponding to 71% crystallization) revealed that Si atoms segregate around the Zr2Cu crystal, and seem to restrain other atoms (Zr, Al, Ni and Cu) diffusing to the surface of Zr2Cu. This implies that Si atoms would inhibit the grain growth of Zr2Cu crystal. In addition, Si atoms will combine with Zr atoms to form Zr2Si crystal after enough annealing time, i.e. 4 hours isothermal annealing at 714 K (which corresponding to 100% crystallization).

When the Zr60Al7.5 Cu17.5Ni10Si4B1 sample isothermally annealed at 714K, Zr2Cu crystals with average size about 5 nm were first observed at the early stage of 1% crystallization by TEM observation. The Zr2Cu crystal size increases with annealing time then reaches about the average size of 25 nm at the stage of 72% crystallization. Additionally, the grain growth time as a function of the cube of particle size of the Zr2Cu type crystalline phases presented a good linear relationship. This indicates that the crystal growth of the Zr60Al7.5Cu17.5Ni10Si4B1 alloy belongs to thermal activation process. The activation energy for the grain growth of Zr2Cu in the Zr60Al7.5Ni10Cu17.5Si4B1 amorphous alloy is calculated to be 210 ± 25 kJ/mole, further higher than those for the base alloy (100 ± 10 kJ/mole), again demonstrating the higher thermal stability of the Zr60Al7.5Ni10Cu17.5Si4B1 amorphous alloy.
中文摘要…………………………………………………………….....................Ⅰ
英文摘要………………………………………………………………………….Ⅳ
誌謝……………………………………………………………………………….Ⅶ
總目錄…………………………………………………………………….............Ⅷ
表目錄……………………………………………………………………………XI
圖目錄…………………………………………………………………………...XII
第一章 前言……………………………………………………………………...1
第二章 理論基礎………………………………………………………………...3
2-1 非晶質合金發展歷程………………………………………………….3
2-2 實驗歸納法…………………………………………………………….4
2-3 非晶質合金之製造方法……………………………………………….5
2-4 非晶質合金之種類…………………………………………………….6
2-5 非晶質合金之特性…………………………………………………….6
2-5-1 機械性質………………………………………………………7
2-5-2 化學性質-耐蝕性……………………………………………...7
2-5-3 磁性質…………………………………………………………8
2-5-4 其他性質………………………………………………………8
2-6 非晶質合金之相關理論……………………………………………….9
2-6-1 熱力學………………………………………………................9
2-6-2 動力學…………………………………………………………9
2-6-3 結晶觀點……………………………………………………..12
2-7 非晶質合金之熱力學性質………………………………………...…12
2-7-1 非晶質之平衡………………………………………………..12
2-7-2 玻璃轉換溫度Tg……………………………………………..13
2-7-3 玻璃形成能力指標…………………………………………..14
2-7-3-1 簡化玻璃溫度Trg……………..……………………14
2-7-3-2 γ值…………………………………………............15
2-8 熱力學………………………………………………………………...15
2-8-1 恆溫分析法…………………………………………………..15
2-8-2 非恆溫分析法………………………………………………..17
2-8-2-1 一般非恆溫分析法………………………………...17
2-8-2-2 修正之非恆溫分析法……………………………...20
第三章 實驗步驟……………………………………………………….............23
3-1 合金試片配製………………………………………………………...23
3-1-1 合金鑄錠熔製………………………………………………..23
3-1-2 薄帶製作……………………………………………………..24
3-2 熱性質分析…………………………………………………………...24
3-2-1 熱差分析(DTA)……………………………………………...24
3-2-2 示差掃描熱分析(DSC)……………………………………...25
3-2-2-1 等速率升溫………………………………………..25
3-2-2-2 恆溫加熱…………………………………………..25
3-3 微觀組織分析………………..……………………………………….25
3-3-1 X光繞射儀…………………………………………………..25
3-3-2 掃描式電子顯微鏡(SEM)..………………………………….26
3-3-3 穿透式電子顯微鏡(TEM)…………………………………..26
第四章 結果與討論……………………………………………………............27
4-1 熱性質分析…………………………………………………………...27
4-1-1 非恆溫熱力學和動力學分析………………………………..27
4-1-1-1 一般之非恆溫分析法-Kissinger plot……………...28
4-1-1-2 修正之非恆溫分析法……………………………...29
4-1-2 恆溫熱力學和動力學分析…………………………………..30
4-2 微觀結構分析………………………………………………………...31
4-2-1 X光繞射分析………………………………………………...31
4-2-2 TEM觀察及動力學分析…………………………….............32
4-2-3 SEM觀察及破斷面分析………………………...…………..39
第五章 結論…………………………………………………………….............41
參考文獻………………………………………………………………….............96
[1]. 吳學陞,工業材料,vol.149, 1999, p.154.
[2]. Z. P. Lu and C. T. Liu, Acta Mater., vol.50, 2002, p.3501.
[3]. W. L. Johnson, Materials Science Forum, vol.225-227, 1996, p.35.
[4]. A. Inoue, M. Koshiba, T.Zhang, and T. Masumoto, Appl. Phys., vol.83,
1998, pp.1967-1972.
[5]. A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline
Materials, 2001.
[6]. M. Naka, K. Hashimoto and T. Masumoto, J. Non-Cryst. Solids,
vol.31, 1979, p.355.
[7]. T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, Mater. Lett., vol.57, 2003,
p.3022.
[8]. B.-M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K.
Hashimoto, Corros. Sci., vol.37, 1995, p.709.
[9]. H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, Mater. Sci. Eng.,
A318, 2001, p.77.
[10]. C. A. C. Sousa and C. S. Kiminami, J. Non-Cryst. Solids, vol.219,
1997, p.155.
[11]. W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, J. A. Horton, C. A. Carmichael Jr. and J. L. Wright, Intermetallics, vol.10, 2002, p.1157.
[12]. A. Inoue, H. Koshiba, T. Zhang and A. Makino, J. Appl. Phys., vol.83, 1998, p.1967.
[13]. Y. Hara, T. Ando, R.C. O''Handley and N. J. Grant, J. Appl. Phys., vol.62, 1987, p.1948.
[14]. A. Inoue, Mater. Sci. Eng., A226-228, 1997, p.357.
[15]. A. Inoue and J. S. Gook, Mater. Trans., JIM, vol.36, 1995, p.1180.
[16]. A. Inoue and J. S. Gook, Mater. Trans., JIM, vol.37, 1996, p.32.
[17]. A. Inoue, T. Zhang, W. Zhang, and A. Takeuchi, Mater. Trans., JIM, vol.37, 1996, p.99.
[18]. A. Inoue, T. Zhang and A. Takeuchi, Mater. Trans., JIM, vol.37, 1996,
p.1731.
[19]. A. Inoue and A. Makino, Nonostruct. Mater., vol.9, 1997, p.403.
[20]. A. Inoue, M. Koshiba, T. Itoi and A. Makino, Appl. Phys. Lett., vol.73
1998, p.744.
[21]. A. Inoue, Mater. Sci. Eng., A304-306, 2001, p.1.
[22]. V. Schroeder, C. Gilbert and R. Ritchie, Scripta Mater., vol.38, 1998,
p.1481.
[23]. T. Zhang and A. Inoue, Mat. Res. Soc. Symp. Proc., vol.554, 1999,
p.361.
[24]. A. Leonhard, M. Heilmaier, J. Eckert and L. Schultz, Mat. Res. Soc. Symp.Proc., vol.554, 1999, p.137.
[25]. A. Inoue, Mater. Trans., JIM, vol.36, 1995, p.886.
[26]. A. Inoue and C. Fan, Mat. Res. Soc. Symp. Proc., vol.554, 1999, p.143.
[27]. A. Inoue, Intermetallics, vol.8, 2000, p.455.
[28]. J. S. C. Jang, H. Y. Tsai, C.H. Tsau and C. J. Chen, The Minerals,
Metals & Materials Society, 1992, p.95.
[29].盧斯誠, Master Thesis, The Effect of Silicon and Boron Addition On
the Glass-Forming Ability and Thermal Stability in Zr-Al-Ni-Cu based
Amorphous Alloys, Kaohsiung, Taiwan, 2004.
[30]. W. Klement, R. H. Wilens and P. Duwez, Nature, vol.187, 1960, p.869.
[31]. H. S. Chen and C.E. Miller, Rev. Sci. Instrum, vol.41, 1970, p.1237.
[32]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans., JIM, vol.32, 1991, p.609.
[33]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans.,
JIM, vol.33, 1992, p.937.
[34]. A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum., A269-272,
1998, p.855.
[35]. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., A29, 1998,
p.1779.
[36]. A. Inoue, Buck Amorphous Alloys. Trans Tech Publications, Zurich, Swiss, 1998.
[37]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology Vol.9, New York, USA, 1991.
[38]. K. L. Chapra, Thin Film Phenomena, McGraw-Hill, 1969.
[39]. W. Paul and R. J. Temkin, Adv. Phys., 1973, p.531.
[40]. B. Li, N. Nordstrom and E. J. Lavernia, Mater. Sci. Eng., A237, 1997
p.207.
[41]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng., B94, 2002, p.141.
[42]. P. S. Grant, Prog. Mater. Sci., vol.39, 1995, p.497.
[43]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, J. Non-Cryst. Solids, vol.284, 2001, p.134.
[44]. A. Inoue, Acta Mater., vol.48, 2000, p.279.
[45].鄭振東,非晶質金屬漫談,建宏出版社,Taipei, Taiwan, 1990.
[46]. A. Inoue, Bluk Amouphous Alloys Practical Characteristics and Application Institute for Material Reserch, Tohoku University Katahira 2-1-1, Sendai 980-8577, Japan.
[47]. H. J. Guntherodt and H. Beck(ed), Glassy Metals I, Springer-Verlag,
Berlin Heidelberg, Germany, 1981.
[48]. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, vol.35, 1994, p.95.
[49]. S. R. Elliot, Physics of Amorphous Materials, USA, 1990.
[50]. Richard Zallen, The Physics of Amorphous Solids, A
Wiley-Interscience, Canada,1983.
[51]. D. Turnbull, Contemp. Phys., vol.10, 1969, p.473.
[52]. M. Avrami, J. Chem. Phys. vol.8, 1940, p.212.
[53]. R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA,
1994.
[54].戴道生、韓汝琪,非晶態高等物理,電子業出版社,China, 1984.
[55]. H. S. Chen, Etal. :Zridence of a Glass-Liquid Transition in a
Gold-Germanium. J. Chem. Phys., vol.48, 1968, pp.2560-2565.

[56]. T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., vol.78 2001, p.1213.
[57]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., vol.49,
2001, p.2645.
[58]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J. Mater. Res., vol.16,
2001, p.2836.
[59]. T. D. Shen and R.B. Schwarz, J. Mater. Res., vol.14, 1999, p.2107.
[60]. T. D. Shen and R.B. Schwarz, Appl. Phys. Lett., vol.75, 1999, p.49.
[61]. B. S. Murty and K. Hono, Mater. Trans., JIM, vol.41, 2000, p.1538.
[62]. W. A. Johnson and K. F. Mehl, Trans. Am. Inst. Mining Met. Eng.,
vol.135, 1981, p.315.
[63]. M. Avrami, J. Chem. Phys. vol.7, 1939, p.1103.
[64]. M. Avrami, J. Chem. Phys. vol.9, 1941, p.177.
[65]. D. W. Henderson, J. Non-Cryst. Solids, vol.30, 1979, p.301
[66]. J. Vazquez, R. A. Ligero, P. Villares and R. Jimenez-Garay, Thermochim. Acta, vol.157, 1990, p.181.
[67]. H. Yinnon and D.R. Uhlmann, J. Non-Cryst. Solids, vol.54, 1983
p.253.
[68]. K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., vol.19, 1984,
p.291.
[69]. J. W. Christian,The Theory of Transformations in Metals and Alloy,
2002.
[70]. J. Vazquez, R. L. Lopez-Alemany, P. Villares and R. Jimenez-Garay,
J. Phys. Chem. Solids, vol.61, 2000, p.493.
[71]. Chung-Cherng Lin and Pouyan Shen, J. Solid State Chem., vol.112,
1994, p.387.
[72]. K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., vol.19, 1984,
p.291.
[73]. G. A. Mansourl, et al., J.Chem. Phy., vol.54, 1971, pp.1523-1527.
[74]. A. Inoue, K. Hashimoto,etal., Amorphous and Nanocrystalline Materials Springer, pp.24-26
[75]. F. Spaepen and D. Tumbull, Scripta Met., vol.8, 1974, p.563.
[76]. P. S. Steif, F. Spaepen and T. W. Hutchinson, Acta metal., vol.30, 1982,
p.447.
[77]. P. G. Saffman and G. I. Taylor, Proc. R. Soc., vol.245, 1958, p.312.
[78]. F. Spaepen, Acta metal., vol.23, 1975, p.615.
[79]. A. S. Argon and M. Salama, Mater. Sci. Eng., vol.23, 1976, p.219.
[80]. E. Pitt and J. Greiller, J. Fluid Met., vol.11, 1961, p.33.
[81]. W. W. Mullins and R. F. Sekerka, J. appl. Phys., vol.35, 1964, p.444.
[82]. F. E. Luborsky and J. L. Walter, J. appl. Phys. , vol.47, 1976, p.3648.
[83]. C. P. P. Chou and F. Spaepen, Acta metal., vol.23, 1975, p.609.
[84]. J. Saida, C. Li, M, Matsushita, and A. Inoue, J. Mater. Sci., vol.5, 2000,
p.4143.
[85]. 洪子翔, Master Thesis, Study of Thermal Properties in Zr-Al-Cu-Ni Amorphous Alloy by Adding Boron and Silicon, Kaohsiung. Taiwan, 2004.
[86]. U. Koster, J. Meingsrdt, S. Roos, and H. Lieber, Appl. Phys. Lett., vol.69, 1996, p.179.
[87].曹秀鳳, Master Thesis, Crystallization Kinetics of the
Zr61Al7.5Cu17.5Ni10Si4 Alloy Using Isothermal DSC and TEM
Observation, Kaohsiung, Taiwan, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top