(100.24.209.47) 您好!臺灣時間:2019/08/26 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:廖怡珍
研究生(外文):Yi-Jen Liau
論文名稱:樟芝2-Cysperoxiredoxin之基因選殖及其特性分析
論文名稱(外文):2-Cys peroxiredoxin from Antrodia camphorata : expression, and properties
指導教授:林棋財
指導教授(外文):Chi-Tsai Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:100
中文關鍵詞:樟芝表現抗氧化酵素
外文關鍵詞:Antrodia camphorataexpressionperoxiredoxin
相關次數:
  • 被引用被引用:7
  • 點閱點閱:529
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用聚合�○s鎖反應,從樟芝子實體選殖出兩段2-Cys peroxiredoxin (AcPrx1及AcPrx) 之全長 cDNA 基因序列,全長大小分別為 942 bp 和 940 bp,而轉譯區分別為 645 bp 和 567 bp,可分別譯出 214 個及 188 個胺基酸。在以往的研究發現,2-Cys Prxs序列會包含兩個高保留的半胱胺酸 (Cys 48與170),而 AcPrx1 (Cys 47與170) 和 AcPrx (Cys 47與165) 亦符合此特性。
以 pAVD 10 作為表現載體,轉形至 E.coli C43 (DE3) 中,再經由IPTG的誘發,即可表現出大量的重組蛋白質,而表現的重組蛋白為 AcPrx1 及 AcPrx 個別與 6 His-tagged 所形成的融合蛋白,可利用含有鎳螯合物凝膠 (nickel chelating Sepharose) 之親合性管柱來純化目標蛋白。
於10 % SDS–PAGE 可觀察到所純化的 AcPrx1 及 AcPrx 大多為雙倍體,只有極少量為單元體,若將兩者處理還原劑 DTT 時,均會使雙倍體轉變為單元體。在活性方面,顯示兩者均為 “thiol- or thioredoxin- dependent activity”,且 AcPrx1 可以保護 DNA 免於受到 .OH 的傷害。
觀察 AcPrx1 之基本特性,於 60℃下加熱 2.5 min 後,活性仍存有 60 %;處在不同 pH 的環境下發現,在 pH 5-11 的範圍內 AcPrx1 活性均很安定;而以 2 % SDS 處理,活性仍有59.5 %;若以 0.2 M imidazole處理,活性還有45 % ;加入 chymotrypsin 會迅速使AcPrx1失活,處理 20 min 後活性即剩46 %;於 trypsin 作用,則在 40 min 時活性仍有57.1 %。
Peroxiredoxins (Prxs) play important roles in antioxidation and cell signaling. A Gene encoding 2-Cys Prx isozyme (2-Cys Prx1) was identified in the expressed sequence tag data base of the Antrodia camphorata, a medicinal mushroom found only in Taiwan. Full-length cDNA of 942 bp encoding the putative 2-Cys Prx from fruiting bodies of A. cam. was cloned by PCR. The deduced amino acid sequence is well-conserved among the reported 2-Cys Prx including the two Cys residues (Cys 48 and 170). To further characterize the A. cam. 2-Cys Prx1, the coding region was subcloned into an expression vector pAVD10 and transformed into E. coli. The recombinant 6His-tagged Prx1 was expressed and purified by Ni2+-nitrilotriacetic acid Sepharose column. The purified enzyme showed two forms by 10 % SDS-PAGE. The enzyme retained 60% activity at 60℃ for 2.5 min. The enzyme was activity under a broad range of pH from 5-11. The enzyme activity lost 59.5% in the presence of 2 % SDS. The enzyme showed 57.1% activity after 40 min of incubation at 37℃ with typsin. The study of the enzyme’s properties was beneficial for the applications of Prx1 in medicine or as health food.
中文摘要……………………………………………………I
英文摘要……………………………………………………II
縮寫表………………………………………………………III
壹、前言……………………………………………………1
一、樟芝………………………………………………….1
二、自由基……………………………………………….5
三、Peroxiredoxins 的發現起源及其歷史回顧………8
四、哺乳動物的 Prx 分為三型及其個別作用機制……14
五、Prx 之調控………………………………………….16
六、2-Cys Prxs 與訊息傳遞的關係……………………19
七、研究動機…………………………………………….21
貳、實驗材料………………………………………………33
參、實驗方法………………………………………………38
一、重組表現質體 DNA 之建構…………………………38
二、重組表現質體 DNA 之轉形作用……………………41
三、重組蛋白質之表現與純化………………………….43
四、酵素活性測定……………………………………….50
五、蛋白質之基本特性分析…………………………….52
肆、結果與討論……………………………………………55
一、AcPrx1 與 AcPrx 兩段全長基因序列之比較…….55
二、AcPrx1 及 AcPrx 之分類………………………….55
三、AcPrx1 及 AcPrx 之subcloning………………….56
四、AcPrx1 及 AcPrx 之表現與純化………………….56
五、AcPrx1 及 AcPrx 活性的測定…………………….58
六、AcPrx1 特性分析……………………………………61
參考文獻……………………………………………………83
附錄…………………………………………………………91
王伯徹、陳啟楨、華傑. (1998) 食藥用菇類的培養與應用,食品工業發展研究所:第M-87-019號.,新竹,台灣. 187頁.
王伯徹、黃仁彰. (2002) 靈芝與樟芝之研發與是場面面觀,食品工業349(5):3-17
劉松鈴 (2005) 樟芝子實體EST之建立與Cytochrome P450、Glutathione-S-transferase、Peroxiredoxin之表現,性質分析與動力學研究,國立海洋大學生物科技研究所碩士學位論文
黃慧明 (2005) 抗氧化酵素2-Cys 和 1-Cys Peroxiredoxin的研究,國立海洋大學生物科技研究所碩士學位論文
白佳貞 (2003) 樟芝免疫調節蛋白與超氧歧化�﹞妞膍s,國立海洋大學生物科技研究所碩士學位論文
Alphey MS, Bond CS, Tetaud E, Fairlamb AH, Hunter WN (2000) The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2 Cys-peroxiredoxins. J Mol Biol 300:903–916
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221
Baier M, Dietz K-J (1998) The plant 2-Cys peroxiredoxin BAS1 is a homodimer whose subunits are linked by disulphide bonds and non-covalent interaction. In: Noga G, Schmitz M, eds. Antioxidants in higher plants: biosynthesis, characteristics, actions and specific functions in stress defence. Aachen: Shaker Verlag, 31-37.
Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980- 984
Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 27:951–965
Cadenas E (1995) Mechanisms of oxygen activation and reactive oxygen species detoxification. Oxidative Stress and Antioxidant Defenses in Biol 1-61
Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994a) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91:7017– 7021
Chae HZ, Uhm TB, Rhee SG (1994b) Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci USA 91:7022-7026
Chae HZ, Chung SJ, Rhee SG (1994c) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670-27678
Chae HZ, Kim HJ, Kang SW, Rhee SG (1999) Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 45:101–112
Chang TT and Chou WN (1995) Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol Res 99:756-758
Chang TS, Jeong W, Choi SY, Yu S, Kang SW, Rhee SG (2002) Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem 277:25370–25376
Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG (2004) Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279:50994–51001
Cherng IH and Chiang HC (1995) Three new triterpenoids from Antrodia cinnamomea. J Nat Prod 58:365-371
Cherng IH, Wu DP, Chiang HC (1995) Triterpenoids from Antrodia cinnamomea. Phytochemistry 41:263-267
Choi J, Choi S, Choi J, Cha MK, Kim IH, Shin W (2003) Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins. J Biol Chem. 278:49478–49486
Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, Park HS, Kim KY, Lee JS, Choi C, Bae YS, Lee BI, Rhee SG, Kang SW (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435:347–353
Chon JK, Choi J, Kim SS, Shin W. (2005) Classification of peroxiredoxin subfamilies using regular expressions. Genomics & Informatics 3:55-60
Church D, Pryor FA, Pryor WA (1985) Free radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64: 111-126
Curnutte JT and Babior BM (1987) Chronic granulomatous disease. Adv Hum Genet 16:229-297
De Haan JB, Bladier C, Griffiths P, Kelner M, O'Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528-22536
De Haan JB, Bladier C, Lotfi-Miri M, Taylor J, Hutchinson P, Crack PJ, Hertzog P, Kola I (2004) Fibroblasts derived from Gpx1 knockout mice display senescent-like features and are susceptible to H2O2-mediated cell death. Free Radic Biol Med 36:53–64
Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93:617-625
Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253
Gommel DU, Nogoceke E, Morr M, Kiess M, Kalisz HM, Floh�� L (1997) Catalytic characteristics of tryparedoxin. European Journal of Biochemistry 248:913-918
Goodell B, and Jellison J (1997) Wood degradation mechanisms used by the brown rot fungus Gloeophyllum trabeum. International Research Group on Wood Preservation Series Document IRG/WP/1997.
Green MJ and Hill HA (1984) Chemistry of dioxygen. Methods Enzymol 105:3-22
Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7-20
Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T, Hakoshima T (1999) Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/ proliferation-associated gene product. Proc Natl Acad Sci USA 96:12333–12338
Hoffmann I, Clarke PR, Marcote MJ, Karsenti E, Draetta G (1993) Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J 12(1):53–63
Hseu YC, Chang WC, Hseu YT, Lee CY, Yech YJ, Chen PC, Chen JY, Yang HL (2002) Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci 71(4):469-82.
Hsu YL, Kuo YC, Kuo PL, Ng LT, Kuo YH, Lin CC. (2005) Apoptotic effects of. extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma. cell lines. Cancer Letters 221(1):77-89
Immenschuh S, Baumgart-Vogt E (2005) Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid Redox Signal 7:768-777

Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem 264:1488-1496
Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG (1998a) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273:6297–6302
Kang SW, Baines IC, Rhee SG (1998b) Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem 273:6303-6311
Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH. (2005) 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends in Mol Medi 11:571-578
Kawazu SI, Tsuji N, Hatabu T, Kawai S, Matsumoto Y, Kano S. (2000) Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasit 109:165–169
Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Critical Reviews in Toxicology 23(1):21-48
Kim K, Rhee SG, Stadtman ER (1985) Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J Biol Chem 260:15394-15397
Kim K, Kim IH, Lee KY, Rhee SG (1988) Stadtman, E. R. The isolation and purification of a specific bprotectorQ protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263:4704-4711
Kim IH, Kim K, Rhee SG (1989) Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc Natl Acad Sci USA 86:6018–6022
Liu JJ, Huang TS, Hsu ML, Chen CC, Lin WS, Lu FJ, Chang WH. (2004) Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol Appl Pharmacol 201(2):186-93
Mizuno T (1995) Biomolecules of mushroom: Food function and medicinal effect of mushroom fungi. Food Research International 11:7-21
Morgan DO (1995) Principles of CDK regulation. Nature 374:131-134
Mruk DD, Silvestrini B, Mo MY, Cheng CY (2002) Antioxidant superoxide dismutase – a review: its function, regulation in the testis, and role in male fertility. Contraception 65:305-311
Murphy MP (1999) Nitric oxide and cell death. Biochim Biophys Acta 1411:401-414
Nogoceke E, Gommel DU, Kiess M, Kalisz HM, Flohe LA (1997) A unique cascade of oxidoreductases catalyses trypanothionemediated peroxide metabolism in Crithidia fasciculata. Biol Chem 378:827–836
Norbury C and Nurse P (1992) Animal cell cycles and their control. Annu Rev Biochem 61:441-470
Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11): 1287-1312
Osada H and Takahashi T (2002) Oncogene 21:7421–7434
Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296:295–309
Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J (2002) Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 277:19396–19401
Reid TM and Loeb LA (1993) Effect of DNA repair enzymes on mutagenesis by oxygen free radicals. Mutat Res 289:181-186
Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000(53):PE1
Rhee SC, Chae HZ, Kim K (2005a) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552
Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS. (2005b) Controlled elimination of intracellular H2O2: Regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7:619-626
Rouhier N, Gelhaye E, Sautiere PE. Brun A, Laurent P, Tagu D, Gerard J, de Fay E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309
Rouhier N, Gelhaye E, Jacquot JP (2002) Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism. J Biol Chem 277:13609-13614
Schroder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure Fold Des 8:605-615
Simic MG (1988) Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat Res 202:377-386
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel TM (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

Thurman RG, Ley HG, Scholz R (1972) Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem 25:420-430
Warner HR (1994) Superoxide dismutase, aging and degenerative disease. Free radical Biol Med 17:249-258
Woo HA, Chae HZ, Hwang SC. Yang KS, Kang SW, Kim K, Rhee SG. (2003a) Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653–656
Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG (2003b) Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 278:47361-47364
Woo HA, Jeong W, Chang TS, Park KW, Yang JS, Rhee SG (2005) Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-Cys peroxiredoxins. J Biol Chem 280:3125-3128
Wood ZA, Poole LB, Hantgan RR, Karplus PA (2002) Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41:5493– 5504
Wood ZA, Schr�鉅er E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32-40
Wu SH, Ryvarden L, Chang TT (1997) Antrodia camphorata ("niu-chang-chih"), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sin 38:273-275
Yang KS, Kang SW, Woo HA. Hwang SC, Chae HZ, Kim K, Rhee SG (2002) Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem 277:38029–38036
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王伯徹、黃仁彰. (2002) 靈芝與樟芝之研發與是場面面觀,食品工業349(5):3-17
2. 江振昌,「論中國大陸的貧富差距」,東亞季刊,第22卷第4期(1991年4月),頁54-86。
3. 江振昌,「中國大陸腦體勞動者的收入差距問題」,東亞季刊,第23卷第3期(1992年1月),頁42-59。
4. 宋國誠,「中共『八屆人大二次會議』後的發展情勢與對策」,中國大陸研究,第37卷第5期(1994年5月),頁5-19。
5. 林琳文,「評中共十六大的思想理論準備」,共黨問題研究,第28卷第10期(台北:2002年10月),頁25-35。
6. 祖光,「論江澤民的政權合法性」,東亞季刊,第28卷第3期(台北:1997年夏季),頁89-106。
7. 徐斯儉,「中共十六大與政治改革」,中國大陸研究,第46卷第4期(台北:2003年7、8月),頁25-54。
8. 徐斯勤,「新制度主義與當代中國政治研究:理論與應用之間對話的初步觀察」,政治學報,第31期(台北:2001年12月),頁95-170。
9. 康曉光,「中國:改革時代的政治發展與政治穩定」,當代中國研究,總第78期(美國:普林斯敦,2002年第3期),頁29-59。
10. 皖河,「利益集團、改革路徑與政治合法性危機」,當代中國研究,2001年第4期(總第75期),頁65-78。
11. 張弘遠,「由專制統治到管理統治-毛鄧時期中國國家能力變化的歷史紋理」,東亞研究,第35卷第1期(2004年1月),頁99-150。
12. 張國聖,「中共意識形態研究的文獻的初步分析」,東亞季刊,第29卷第2期(1998年春季),頁108-124。
13. 楊開煌,「對江澤民『十六大』政治報告之研析」中共研究,36卷12期(2002年12月),頁25-32。
 
系統版面圖檔 系統版面圖檔