(18.205.60.226) 您好!臺灣時間:2019/12/15 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:林郁婷
研究生(外文):Yu-Ting Lin
論文名稱:微粒防護衣之測試方法探討
論文名稱(外文):Search for test methods of particle protective clothing
指導教授:陳志傑陳志傑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:58
中文關鍵詞:微粒防護衣超低風速
外文關鍵詞:particle protective clothingextra-low face velocity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
個人防護具是用來保護工作人員避免有害物經由皮膚暴露,截至目前為止,雖然有許多的方法可用來測試防護衣之性能,但這些方法均著重於對液體噴濺或蒸氣危害之防護性能的測試,而對於空氣中粒狀物防護性能的測試方法並不完整。其次,目前的防護衣由於著重在防液體滲透的功能,因此降低了防護衣的透氣性,以致於使用者穿著時可能會造成熱、物理與心理上的壓迫,或者是影響到活動視野、行動與溝通障礙等的現象。站在防護衣正確使用的觀點上,過度和不足的保護都必須加以避免。因此,本研究的最終目的在於訂定微粒防護衣之測試方法。
在此研究中,使用市售之防護衣進行微粒穿透率及空氣阻抗測試。過濾風速範圍設定於0.1至10 cm/sec,以了解過濾機制中重力沉降與慣性衝擊之轉換過程,另外使用氣動微粒分徑器(Aerodynamic Particle Sizer, APS)量測上游及下游微粒濃度及粒徑分佈。首先進行市售防護衣微粒過濾特性,其後使用有彈性的聚氨酯海綿作為測試濾材,此材質的優點是結構均勻且低充填密度產生低壓降,而且不論如何擠壓、改變其充填密度都不會影響到纖維直徑,更重要的是經過清洗之後可重複使用,再現性良好。
微粒穿透率數據結果顯示C級化學防護衣的防護特性最好,卻有高空氣阻抗,過度保護可能會有不舒適的情況發生,而其他防護衣在表面風速為1 cm/sec以上都有較高的微力穿透率。建議醫療人員在感染病房內進行醫療行為時減慢動作速度,以降低微粒穿透過防護衣的機會。為了發展較佳過濾品質的微粒防護衣,建議未來微粒防護衣測試方法為:(1) 粒數中數粒徑為10 μm之固態或液態微粒作為測試微粒;(2) 過濾風速為5 cm/sec;(3) 利用計算微粒飛行時間的儀器(如:APS)量測1~20 μm之數目濃度及粒徑分佈。
Personal protective clothing is designed to protect workers against hazardous substances that might come into contact with the skin. Several widely accepted test methods are available to measure barrier properties of protective clothing against liquid and vapor assaults. However, there is no officially accepted test method for particulate protective clothing, probably due to lack of aerosol penetration data. For any given situation, equipment and clothing should be selected that provide an adequate and appropriate level of protection. Overprotection as well as underprotection can become hazardous and should be avoided. Accordingly, the ultimate goal of this study is to establish the test method for particle protective clothing.
In the present study, a variety of protective garments, currently used in health care industry, were tested for aerosol penetration and air resistance. Filtration velocity ranging from 0.1 to 10 cm/sec was employed to study the flow dependency. An Aerodynamic Particle Sizer was used to measure the aerosol concentrations and size distributions upstream and downstream of the garment media. Besides the protective garments, the flexible polyurethane foam was selected as a reference filter medium for their relatively low pressure drop due to the open pore skeletal structure and low packing density. The pressure drop across the filter medium was monitored by using an inclined manometer.
Aerosol penetration data showed that C-class garment performed well but at the cost of high air resistance. The overprotection may lead to uncomfortable physical conditions. Other garments showed unacceptable high aerosol penetration when the face velocity is above 1 cm/sec. An advisory should be issued to health care workers not to make large and fast move in the infection-control area, to avoid unnecessary high aerosol penetration. Particulate protective clothing of better filtration quality apparently needs to be developed. We propose the following items to be included in the future test method of particulate protective clothing: (1) aerosols (solid or liquid) with count median diameter of 10 μm to be the test agent, (2) face velocity of 5 cm/sec, and (3) a high resolution time-of-flight machine (such as Aerodynamic Particle Sizer) covering aerosol size from 1 to 20 μm to be used for measuring aerosol concentration and size distribution.
目錄......................................................I
表目錄..................................................III
圖目錄...................................................IV
中文摘要..................................................1
ABSTRACT..................................................3
一、研究主旨..............................................5
1-1前言...............................................5
1-2 研究目標..........................................6
1-3 工作項目..........................................7
二、背景分析..............................................8
2-1 各類防護衣測試規範及標準.........................8
2-1-1 歐洲標準....................................8
2-1-2 美國標準....................................9
2-1-3 美國材料試驗學會(ASTM)材料測試標準..........9
2-1-4 國家防火協會(NFPA)標準.....................10
2-1-5 世界衛生組織(WHO)標準....................12
2-1-6 杜邦測試標準...............................12
2-2 醫療用防護衣....................................13
2-3 海綿的過濾特性..................................14
2-3-1 海綿的壓降(空氣阻抗).....................14
2-3-2 海綿的過濾特性.............................15
2-3-3 「過濾」概論...............................16
2-3-4 海綿之過濾品質.............................17
三、實施方法及進行步驟...................................19
3-1 研究方法........................................19
3-2 測試條件........................................19
3-2-1 選擇測試濾材...............................19
3-2-2濾材的握持器的設計..........................21
3-2-3 選擇測試氣懸微粒...........................22
3-2-4 微粒測試系統...............................23
3-3 實驗流程........................................23
四、結果與討論...........................................26
4-1 防護衣過濾特性..................................26
4-1-1 各式防護衣之壓降變化.......................26
4-1-2 各式防護衣之微粒穿透率.....................27
4-1-3 環境速度與隔離衣距離不同之微粒穿透率測試...28
4-2 防護衣動態壓降測試...............................28
4-3 海綿於超低風速下之穿透率理論與實驗結果...........30
4-3-1 海綿之穿透率理論...........................30
4-3-2 海綿穿透率實驗結果.........................32
4-4 濾材之過濾品質...................................32
五、結論與建議...........................................34
六、重要參考文獻.........................................36

表目錄
表1. 美規防護衣具分類....................................40
表2. 世界衛生組織(WHO)禽流感照顧病患之醫護人員防護具之標準...41
表3. 杜邦測試標準(針對歐規P5............................42
表4. 醫用防護衣之性能與等級 .............................43
表5. 各式防護衣之特性 ...................................44
表6. 採樣速度0.1 cm/sec,不同尺寸微粒經過濾材的距離......45

圖目錄
圖一、各式防護衣之電顯圖(50x)............................46
圖二、握持器.............................................47
圖三、口沫粒徑大小(Duguid ,1945).........................48
圖四、超音波霧化器產生之口沫粒徑.........................49
圖五、微粒穿透率系統.....................................50
圖六、模擬微粒接觸防護衣系統.............................51
圖七、各式防護衣之壓降比較...............................52
圖八、各式防護衣之微粒穿透率比較.........................53
圖九、環境風速與濾材距離關係圖...........................54
圖十、不同濾材內部之壓降及表面風速圖.....................55
圖十一、110 ppi海綿微粒穿透率實驗值與理論值比較圖........56
圖十二、V=5 cm/sec時濾材之過濾品質.......................57
圖十三、聚丙烯不織布隔離衣於不同表面風速下之過濾特性.....58
ASTM Designation: F 2053-00, 2000; Standard Guide for Documenting the Results of Airborne Particle Testing of Protective Clothing Materials.
British Standard, BS EN 465, 1995; Protective clothing-protection against liquid chemicals -Performance requirements for chemical protective clothing with spray-tight connections between different parts of the clothing (type 4 equipment).
British Standard, BS EN 466-1, 1995; Protective clothing- Protection against liquid chemicals.
British Standard, BS EN 943-1, 2002; Protective clothing against liquid and
gaseous chemicals, including liquid aerosols and solid particles.
Brown, R.C., 1984; A Many-fiber Model for Airflow through a Fibrous Filter. J. Aerosol Sci. Vol. 15, no. 5, 583-593.
Chen, C. C., Lehtimaki, M., and Willeke, K., 1993; Loading and Filtration Characteristics of Filtering Facepieces. Am. Ind. Hyg. Assoc. J. 54(2):51-60.
Davies, C. N., 1983; Filtration of Aerosols. J. Aerosol Sci. 14:147-161.
Dooley, S. W., Castro, K. G., Hutton, M. D., Mullan, J. A., Polder, J. A. and Snider, D. E.. 1990; Guidelines for Preventing the Transmission for Tuberculosis in healthy care setting; with special focus on HIV related issues. Morbidity and Mortality Weekly Report. 39(RR-17):1-29.
Duguid, J.P., 1945; The Size and the Duration of Air-carriage of Respiratory Droplets and Droplet-nuclei. Journal of Hygiene. 54:471-479.
Emi, H., Okuyama, K. and Yoshioka N., 1973; Prediction of Collection Efficiency of Aerosols by high-porosity fibrous filter. Journal of Chemical engineering of
37
Japan. Vol. 6, No.4:349-354.
Emi, H., Kanaoka. C., Otani Y., and Ishiguro T., 1987; Collection Mechanisms of Electric Filter. Particulate Sci. and Technol. 5:161-171.
Galeev, R.S. and Zaripov, S. K., 2003; Deposition of Aerosol Particles on a Sphere: The Role of Gravity. Aerosol Science and Technology 37:325-329.
Hinds, W. C., 1999; Aerosol Technology. Second Edition. New York; John Wiley and Sons, Inc.182-208.
Huang, S.H. Chen, C.C., 1998; The Effects of Particle Charge on the Performance of a Filtering Facepiece. AIHA, 59:227-233.
Huang, C. H., Tsai, C. J., and Shih, T. S., 2000; Particle Collection Efficiency of Small Inertial Impactors Considering Particle Gravitational Effect. J. Aerosol. Sci. Vol. 31 Suppl. 1, pp. S124-125.
Ingham, D.B., 1981; The Diffusional Deposition of Aerosols in Fibrous Filter. J. Aerosol Sci. 12:357-365.
Kenny, L. C., Aitken, R. J., Beaumont, G. and Görner, P., 2001; Investigation and application of a model for porous foam aerosol penetration. Journal of Aerosol Science Vol. 32, pp. 271-285.
Kowalski, W. J., 1998; Airborne Respiratory Diseases and Mechanical Systems for Control of Micronbes. HAPC, Vol. 70:.34-48.
Lee, K.W. and Liu, B.Y. H., 1982; Theoretical Study of Aerosol Filtration by Fibrous filter. Aerosol Sci. Technol. 1:147-161.
Liu, B. Y. H. and Rubow, K.L., 1986; Air Filtration by Fibrous Media. In Fluid Filtration: Gas, Volume I. R.R. Raber, ed. ASTM STP 975, p. 1-13.
Mackintosh, C. A. and Lidwell, O. M., 1980; The Evaluation of Fabrics in Relation to Their Use as Protective Garment in Nursing and Surgery. . Wet ⅢPenetration and Contact Transfer of Particles through clothing. J. Hyg.,
38
Camb.,85 393.
May, K.R., 1975; Aerosol impaction jets. Journal of Aerosol Science, 6, 403.
NFPA 1999, 2003; Standard on Protective Clothing for Emergency Medical Operations.
NFPA 1994, 2006; Protective Ensembles for First Responders to CBRN Terrorism Incidents.
Nguyen, X. and Beeckmans, J.M.,1975; Single Fiber Capture Efficiencies of Aerosol Particles in Real and Model Filters in the Inertial-Interceptive Domain. J. Aerosol Sci. 6:205-212.
Papineni, R. S. and Rosenthal, F. S. 1997; The size Distribution of Droplets in the Exhaled Breath of Healthy Human Subjects. Journal of Aerosol Medicine. 10(2):105-116.
Rader, D. J. and Marple, V. A., 1985; Effect of ultra-stockesian drag and particle interception on impaction characteristics. Aerosol Science Technology. (4)141.
Riley, R. L. 1974. Airborne Infection. Am. J. Med. 57:466-475.
Schneider, T., Cherrie, J.W., Vermeulen, R., and Kromhout, H. 2000.; Dermal Exposure Assessment. Ann Occup Hyg, 44(7): 493–499.
Stechkina, I. B., Kirsch, A. A. and Fuchs, N. A., 1968; Studies on Fibrous Aerosol- IV. Calculation of Aerosol Deposition in Model Filter in the Range of Maximum Penetration. Fundamentals of Aerosol Science, Wiley, New York.
Stull, J. O. and White, D. F., 1992; A Review of Overall Integrity and Material Performance Tests for the Selection of Chemical Protective Clothing. Am. Ind. Hyg. Assoc. J. 53(7): 455- 462.
Talbot, T. L. and Pizzo, P. A., 1980; Simple and Microbiologically Safe Portable Transport Unit for Patients Requiring Protected Isolation. Journal of Clinical Microbiology, p. 234-237.
39
Vincent, J. H., Aitken, R. J. and Mark, D. 1993; Porous Plastic Foam Filtration Media: Penetration Characteristics and Applications in Particle Size-selective Filtration. J. Aerosol Sci., Vol.24, No. 7, pp. 929-944.
Wake, D. and Brown, R. C., 1991; Filtration of Monodisperse aerosols and Polydisperse Dusts by Porous Foam Filters. J. Aerosol Sci., vol. 22, No. 6, pp. 296-706.
Willam, R. F., Frieben, W. R., 1983; Control of the Aseptic Processing Environment. Am. J. Hosp. Pharm. 40:1928-1935.
Yeh, H. C. and Liu, B. Y. H., 1974; Aerosol Filtration by Fibrous Filters-I. theoretical. J. Aerosol Sci. 5:191-204.
林凱義,(2003);A級防護衣檢視及氣密測試方法介紹。勞工安全衛生簡訊第59期。
經濟部標準檢驗局,2004:拋棄式醫用防護衣−性能要求,CNS14798,T5019
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 吳明德。「圖書館評鑑」。國立成功大學圖書館館刊11(民92年4月):1-8。 (2003/10/26)
2. 盧秀菊。「學術圖書館之績效評估」。大學圖書館3:4 (民88年10月):4-14。
3. 郭麗芳。「網路電子期刊評估之研究」。大學圖書館1:3 (民86年7月):56-81。
4. 陳昭珍。「電子資源的長久保存」。佛教圖書館館訊25/26(民90年3月)。<http://www.gaya. org.tw/journal/m25-26/25-main3.htm>(2002/11/27)
5. 詹麗萍。「圖書館數位化館藏的建置內容、經費架構及使用研究」。興大人文學報33(下)(民92年6月):1069-1094。
6. 張嘉彬。「臺大電子圖書館與博物館系統之評估研究–以查詢過程記錄分析法為例」。中國圖書館學會會報66 (民90年6月):103-125。
7. 張嘉彬。「運用深度訪談法評估臺大電子圖書館與博物館系統」。大學圖書館6:1 (民91年3月):94-118。
8. 張嘉彬。「系統評估研究之文獻探討:從電子圖書館角度考量」。大學圖書館3:2 (民88年4月):69-94。
9. 吳明德。「大學圖書館電子資源館藏發展之研究」。大學圖書館3:2 (民88年4月):4-28。
10. 王梅玲。「電子期刊對學術圖書館技術服務的影響」。中華民國圖書館學會會報 75(民94):161-172。
11. 邱炯友。「資訊價值體系中之電子出版」。資訊傳播與圖書館學3:2(民85):54-65。
12. 林愉珊、張慧銖。「期刊使用率調查暨電子期刊館藏發展之探討:以臺大醫圖為例」。大學圖書館5:1 (民90年3月):79-92。
13. 林珊如。「鄉土教育網站使用者研究之應用:以「淡水河溯源」數位博物館為例」。大學圖書館6:2 (民91年9月):51-64。
14. 吳雅慧、吳明德。「電子期刊使用研究--以國立臺灣大學電機資訊學院及文學院為例」。國家圖書館館刊 92:1(民92年4月):169-196。
15. 吳英美。「電子期刊對圖書館期刊服務的影響」。國立中央圖書館臺灣分館館刊4:2 (民86年12月):36-50。
 
系統版面圖檔 系統版面圖檔