跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃君婷
研究生(外文):Chun-Ting Huang
論文名稱:牛樟芝萃取物抑制微小膠質細胞發炎機制之探討
論文名稱(外文):Study on the anti-inflammatory mechanisms of Taiwanofungus in microglia
指導教授:蘇慶華,梁有志
指導教授(外文):Ching-Hua Su, Yu-Chih Liang
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:樟芝微小膠質細胞發炎反應
外文關鍵詞:Taiwanofungus camphoratusmicrogliainflammation
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
樟芝 (Taiwanofungus,學名Taiwanofungus camphoratus)為台灣特有的真菌類,具有抗發炎、抗氧化、血管舒張以及抗B型肝炎病毒等生理活性,然而,其詳細抗發炎成分與機制尚未明確。在本研究論文中,我們使用野生型樟芝、液態培養樟芝和固態培養樟芝的冷水、甲醇和熱水三種萃取物,並檢驗它們在微小膠質細胞中的抗發炎作用,並進而探討樟芝萃取物對於預防腦部退化性疾病的產生可能扮演的角色。微小膠質細胞為腦中的免疫細胞,扮演著監控與防禦的角色。然而活化的微小膠質細胞會大量表現誘生型一氧化氮合成酶 (inducible nitric oxide synthase, iNOS)並使iNOS的代謝物一氧化氮 (NO) 大量產生,iNOS和NO的生合成對於發炎反應和腦部退化性疾病的形成扮演重要的角色。首先,以不同濃度及種類的樟芝萃取物處理EOC13.31微小膠質細胞,再以脂多醣 (LPS)和干擾素- (IFN-)誘導EOC13.31微小膠質細胞發炎,並偵測iNOS的表現。西方點墨法及反轉錄-聚合酶連鎖反應顯示,在EOC13.31微小膠質細胞內,野生型樟芝、液態培養樟芝和固態培養樟芝的冷水、甲醇和熱水萃取物皆可抑制LPS和IFN- 所誘導的iNOS蛋白質和mRNA表現;然而,在我們所測試的九種樟芝萃取物中,野生型樟芝甲醇萃取物抑制效果最明顯,且隨著濃度增加其抑制iNOS和TNF-表現的效果越顯著。另外,我們進一步證實由野生型樟芝甲醇萃取物中分離出的CKJ-35-2抑制LPS和IFN- 所誘導的iNOS蛋白質表現的效果最顯著。為了確認其中的抑制機轉,西方點墨法之結果顯示野生型樟芝甲醇萃取物可抑制EOC13.31微小膠質細胞內LPS和IFN- 所誘導p-STAT1 (signal transducer and activator of transcription-1)、p-ERK (extracellular signal- regulated protein kinases)、p-JNK (c-Jun NH2-terminal protein kinases)的活性,除此之外野生型樟芝甲醇萃取物也可抑制 IB(inhibitor B)的降解和p-IB的活性。當我們改以-Amyloid (25 M)刺激細胞發炎時,野生型樟芝甲醇萃取物同樣隨濃度增加而抑制iNOS表現的效果越顯著。綜合以上結果,證實樟芝甲醇萃取物為一種抗發炎物質,可有效抑制腦部微小膠質細胞中iNOS和TNF-的表現,進而抑制微小膠質細胞發炎的情形。此篇研究報告結果顯示樟芝萃取物調節iNOS的特性也許在預防腦部細胞的發炎反應及腦部退化性疾病的形成扮演重要的角色。
Taiwanofungus (Taiwanofungus camphoratus), a medicinal mushroom in Taiwan, is reported to provide several therapeutic benefits including anti-inflammation, antioxidation, vasorelaxation, antihepatitis B surface antigen activities, but the underlying molecular mechanisms are not well understood. In this study, we used three cultured types of wild type, Liquid-state culture, and solid-state culture Taiwanofungus extracts, and to examine their anti-inflammatory effect in microglia cells and the possible role in the protection of neurodegenerative diseases. Since microglia is the immune cell in the brain, it plays a defense and monitoring role. However, activated microglia expresses high level of inducible nitric oxide synthase (iNOS) and its metabolite nitric oxide (NO) that significantly contributes to the pathogenesis of neurodegenerative diseases. First, EOC13.31 microglia was treated with various kinds of Taiwanofungus extracts and lipopolysaccharide (LPS) and interferon- (IFN-), then detected the iNOS expression. Western blot and RT-PCR analysis demonstrated that cold water, methanol, and hot water extracts of wild type, Liquid-state culture, and solid-state culture Taiwanofungus significantly blocked the protein and mRNA expression of iNOS in LPS and IFN- -activated microglia. Among nine extracts of Taiwanofungus, methanol extracts of wild type Taiwanofungus was the most potent inhibitor on the iNOS and TNF- expression, and the inhibition by a dose-dependant manner. The CKJ-35-2 fraction of methanol extracts of wild type Taiwanofungus, effectively inhibited the iNOS expression. To clarify the mechanisms involved, methanol extracts of wild type Taiwanofungus was found to inhibit the LPS and IFN--induced the phosphorylation of extracellular signal-regulated protein kinases (ERK), c-Jun NH2-terminal protein kinases (JNK) and signal transducer and activator of transcription-1 (STAT1). Moreover, methanol extracts of wild type Taiwanofungus also inhibited NF-B activition through the prevention of inhibitor B (IB) degradation and phosphorylation. These results suggests that modulation of iNOS expression by Taiwanofungus extracts may be important in the prevention of inflammation and neurodegenerative diseases.
目錄(Contents) I
中文摘要(Abstract in Chinese) VII
英文摘要(Abstract in English) IX
縮寫表(Abbreviations) XI
緒論( introduction ) 1
壹、腦神經組織與發炎 1
1、腦神經組織介紹 1
2、腦神經組織發炎反應 2

貳、神經退化性疾病與乙型類澱粉質 (-amyloid) 3
1、神經退化性疾病 3
2、乙型類澱粉質 4
3、乙型類澱粉質及相關發炎反應 5
4、iNOS與微小膠質細胞發炎、-Amyloid以及腦部退化性疾病的關係 6

叁、訊號傳遞相關路徑 7
1、有絲分裂-活化蛋白質激酶路徑 (mitogen-activated protein kinase pathways, MAPK pathways) 7
2、Transcription factors (NF-B): 8
3、訊號傳遞路徑文獻探討: 9

肆、樟芝 (Taiwanofungus) 11
1、簡介 11
2、樟芝的成分 13
3、樟芝生理機能性 13
實驗材料與方法 16
壹、實驗材料 16
1、樟芝 16
2、藥品試劑 16
3、儀器 18
貳、細胞培養實驗: 19
1、EOC13.31: 19
2、EOC細胞培養液的製備: 19

叁、微小膠質細胞的培養: 20

肆、西方墨漬法 (Western-blot) 20
1、細胞蛋白質之收集 20
2、蛋白質含量測定 20
3、1級抗體及2級抗體 21
4、實驗方法 22

伍、反轉錄酶-聚合酶連鎖反應 (Reverse Transcriptase -Polymerase Chain Reaction, RT-PCR) 23
1、萃取核糖核酸 (RNA) 23
2、反轉錄 (Reverse Transcription) 23
3、聚合酶連鎖反應 (Polymerase chain reaction) 24
4、核酸電泳 25

陸、乙型類澱粉質(β-Amyloid)配製 25
1、Aβ25-35 25

柒、動物實驗: 25
1、實驗動物: 25
2、實驗方法: 25

捌、統計分析 26

附錄 27

實驗結果(Results) 29
壹、野生型樟芝的冷水、甲醇以及熱水萃取物均可抑制微小膠質細胞中LPS 和IFN- 所誘導iNOS蛋白質的表現 29

貳、野生型樟芝、液態培養樟芝和固態培養樟芝的甲醇萃取物可抑制微小膠質細胞中LPS 和IFN- 所誘導iNOS的表現 29

叁、野生型樟芝甲醇萃取物隨著濃度增加,抑制微小膠質細胞中LPS 和IFN- 所誘導iNOS蛋白質和mRNA表現的效果越顯著 30

肆、野生型樟芝甲醇萃取物隨著濃度增加而抑制微小膠質細胞中LPS 和IFN- 所誘導TNF- mRNA表現的效果越顯著 30

伍、野生型樟芝甲醇萃取物與微小膠質細胞型態變化的關係 31

陸、野生型樟芝甲醇萃取物內五種成分與微小膠質細胞中LPS 和IFN- 所誘導iNOS的表現的關係 31

柒、野生型樟芝甲醇萃取物與微小膠質細胞中LPS 和IFN- 所誘導的訊號傳遞路徑的關係 32

( 1 )野生型樟芝甲醇萃取物與LPS 和IFN- 所誘導的p-STAT1活性表現的關係 32
( 2 ) 野生型樟芝甲醇萃取物與LPS 和IFN- 所誘導的p-ERK活性表現的關係 33
( 3 ) 野生型樟芝甲醇萃取物與LPS 和IFN- 所誘導的p-JNK活性表現的關係 33
( 4 ) 野生型樟芝甲醇萃取物與LPS 和IFN- 所誘導的p-p38活性表現的關係 34
( 5 ) 野生型樟芝甲醇萃取物與LPS 和IFN- 所誘導的IB蛋白及活性表現的關係 35

捌、野生型樟芝甲醇萃取物隨著濃度增加而抑制微小膠質細胞中-amyloid所誘導iNOS蛋白質表現的效果越顯著 35

玖、野生型樟芝甲醇萃取物和固態培養樟芝甲醇萃取物可抑制老鼠耳朵的發炎水腫現象 36
討論(Discussion) 37
壹、實驗結果摘要與結論 37

貳、實驗結果討論 38
1、樟芝 38
2、微小膠質細胞發炎 39
3、微小膠質細胞發炎訊號傳遞路徑 40

結果圖表 44
Fig. 1 Effects of cold water extracts, methanol extracts and hot water extracts of wild type Taiwanofungus on the LPS & IFN- -mediated iNOS protein expression in EOC13.31 microglia. 44

Fig.2 Effects of cold water extracts, methanol extracts and hot water extracts of wild type Taiwanofungus on the LPS & IFN- -mediated iNOS protein expression in EOC13.31 microglia. 45

Fig.3 Effects of wild type, Liquid-state culture and solid-state culture methanol extracts of Taiwanofungus on the LPS & IFN- -mediated iNOS protein expression in EOC13.31 microglia. 46

Fig.4 Effects of wild type, Liquid-state culture and solid-state culture methanol extracts of Taiwanofungus on the LPS & IFN- -mediated iNOS protein expression in EOC13.31 microglia. 47

Fig.5 Effects of wild type, Liquid-state culture and solid-state culture methanol extracts of Taiwanofungus on the LPS & IFN- -mediated iNOS mRNA expression in EOC13.31 microglia. 48

Fig.6 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN-- mediated iNOS protein expression in EOC13.31 microglia. 49

Fig.7 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN--mediated iNOS mRNA expression in EOC13.31 microglia. 50

Fig.8 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated TNF- mRNA expression in EOC13.31 microglia. 51

Fig.9 Effect of methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated morphology change in EOC13.31 microglia. 52

Fig.10 Effects of 5 fractions of methanol extracts of Taiwanofungus on the LPS & IFN- -mediated iNOS expression in EOC13.31 microglia. 53

Fig.11 Effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated p-STAT1 expression in EOC13.31 microglia. 54

Fig.12 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN-- mediated p-STAT1 expression in EOC13.31 microglia. 55

Fig.13 Effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated p-ERK expression in EOC13.31 microglia. 56

Fig.14 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN-- mediated p-ERK expression in EOC13.31 microglia… 57

Fig.15 Effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated p-JNK expression in EOC13.31 microglia. 58

Fig.16 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN-- mediated p-JNK expression in EOC13.31 microglia. 59

Fig.17 Effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated p-p38 expression in EOC13.31 microglia. 60

Fig.18 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN-- mediated p-p38 expression in EOC13.31 microglia. 61

Fig.19 Effects of p38 inhibitor and methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated iNOS protein expression in EOC13.31 microglia. 62

Fig.20 Effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN- -mediated IB expression in EOC13.31 microglia. 63

Fig.21 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN-- mediated p-IB expression in EOC13.31 microglia. 64

Fig.22 Dose-dependent effects of -amyloid -mediated iNOS protein expression in EOC13.31 microglia. 65

Fig.23 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the -amyloid- mediated iNOS protein expression in EOC13.31 microglia. 66

Table.1 Inhibitory effects of methanol extracts of wild type and solid-state culture type Taiwanofungus on TPA-induced ear edema in Mouse.ab 67

Fig.24 Inhibitory effects of methanol extracts of wild type and solid-state culture type Taiwanofungus on TPA-induced ear edema in Mouse. 68

Fig.25 The proposed signaling transduction mechanisms involved in LPS & IFN- -mediated iNOS expression in EOC13.31 microglia…………….67

Fig.S1 Effects of cold water extracts, methanol extracts and hot water extracts of wild type Taiwanofungus on the LPS & IFN- -mediated iNOS and HO-1 protein expression in EOC13.31 microglia. 70

Fig.S2 Dose-dependent effects of methanol extracts of wild type Taiwanofungus on the LPS & IFN-- mediated iNOS ans HO-1 protein expression in EOC13.31 microglia. 71
參考文獻( References ) 72
Akama, K. T., and Van Eldik, L. J. (2000). Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J Biol Chem 275, 7918-7924.
Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., et al. (2000). Inflammation and Alzheimer's disease. Neurobiol Aging 21, 383-421.
Aloisi, F. (1999). The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv Exp Med Biol 468, 123-133.
Ayasolla, K., Khan, M., Singh, A. K., and Singh, I. (2004). Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med 37, 325-338.
Baeuerle, P. A., and Henkel, T. (1994). Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12, 141-179.
Baldwin, A. S., Jr. (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14, 649-683.
Bhat, N. R., Zhang, P., Lee, J. C., and Hogan, E. L. (1998). Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18, 1633-1641.
Bodles, A. M., and Barger, S. W. (2005). Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK. Neurobiol Aging 26, 9-16.
Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E., Morgenbesser, S. D., DePinho, R. A., Panayotatos, N., Cobb, M. H., and Yancopoulos, G. D. (1991). ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675.
Brosnan, C. F., Battistini, L., Raine, C. S., Dickson, D. W., Casadevall, A., and Lee, S. C. (1994). Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci 16, 152-161.
Chao, C. C., Hu, S., Close, K., Choi, C. S., Molitor, T. W., Novick, W. J., and Peterson, P. K. (1992). Cytokine release from microglia: differential inhibition by pentoxifylline and dexamethasone. J Infect Dis 166, 847-853.
Chen, J. C., Ho, F. M., Pei-Dawn Lee, C., Chen, C. P., Jeng, K. C., Hsu, H. B., Lee, S. T., Wen Tung, W., and Lin, W. W. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521, 9-20.
Cheng J.Y., Y. C. J., Cheng C.H., Wang Y.T.,Huang N.K.,and Lu M.K (2005). Characterization and Functional Study of Antrodia camphorata Lipopolysaccharide. J Agric Food Chem 53, 469-474.
Combs, C. K., Karlo, J. C., Kao, S. C., and Landreth, G. E. (2001). beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21, 1179-1188.
Dickson, D. W. (1997). The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56, 321-339.
Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., and Brosnan, C. (1993). Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7, 75-83.
Esler, W. P., and Wolfe, M. S. (2001). A portrait of Alzheimer secretases--new features and familiar faces. Science 293, 1449-1454.
Espey, M. G., Chernyshev, O. N., Reinhard, J. F., Jr., Namboodiri, M. A., and Colton, C. A. (1997). Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8, 431-434.
Esposito, L., Gan, L., Yu, G. Q., Essrich, C., and Mucke, L. (2004). Intracellularly generated amyloid-beta peptide counteracts the antiapoptotic function of its precursor protein and primes proapoptotic pathways for activation by other insults in neuroblastoma cells. J Neurochem 91, 1260-1274.
Fiebich, B. L., Lieb, K., Engels, S., and Heinrich, M. (2002). Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J Neuroimmunol 132, 18-24.
Floden, A. M., and Combs, C. K. (2006). Beta-amyloid stimulates murine postnatal and adult microglia cultures in a unique manner. J Neurosci 26, 4644-4648.
Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., and Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem 81, 1285-1297.
Goedert, M., Jakes, R., Crowther, R. A., Hasegawa, M., Smith, M. J., and Spillantini, M. G. (1998). Intraneuronal filamentous tau protein and alpha-synuclein deposits in neurodegenerative diseases. Biochem Soc Trans 26, 463-471.
Hardy, J. A., and Higgins, G. A. (1992). Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185.
Herrera, A. J., Castano, A., Venero, J. L., Cano, J., and Machado, A. (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7, 429-447.
Hosoi, T., Suzuki, S., Nomura, J., Ono, A., Okuma, Y., Akira, S., and Nomura, Y. (2004). Bacterial DNA induced iNOS expression through MyD88-p38 MAP kinase in mouse primary cultured glial cells. Brain Res Mol Brain Res 124, 159-164.
Hseu, Y. C., Chang, W. C., Hseu, Y. T., Lee, C. Y., Yech, Y. J., Chen, P. C., Chen, J. Y., and Yang, H. L. (2002). Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci 71, 469-482.
Hseu YC, W. F., Wu JJ, Chen JY, Chang WH, Lu FJ, Lai YC, Yang HL. (2005). Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kB pathway. International Immunopharmacology 5, 1914-1925.
Hsu, Y. L., Kuo, Y. C., Kuo, P. L., Ng, L. T., Kuo, Y. H., and Lin, C. C. (2005). Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 221, 77-89.
Iqbal, K., Alonso, A. C., Gong, C. X., Khatoon, S., Pei, J. J., Wang, J. Z., and Grundke-Iqbal, I. (1998). Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl 53, 169-180.
Iravani, M. M., Kashefi, K., Mander, P., Rose, S., and Jenner, P. (2002). Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110, 49-58.
Jong, S. C., and Birmingham, J. M. (1993). Medicinal and therapeutic value of the shiitake mushroom. Adv Appl Microbiol 39, 153-184.
Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Koh, S. I., Kimura, T., Green, S. J., and et al. (1994). Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263, 1612-1615.
Karin, M. (1994). Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol 6, 415-424.
Karin, M. (2004). Mitogen activated protein kinases as targets for development of novel anti-inflammatory drugs. Ann Rheum Dis 63 Suppl 2, ii62-ii64.
Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621-663.
Kaufman, P. L. (1999). Nitric-oxide synthase and neurodegeneration/ neuroprotection. Proc Natl Acad Sci U S A 96, 9455-9456.
Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S. (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20, 6309-6316.
Kreutzberg, G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19, 312-318.
Kyosseva, S. V. (2004). Mitogen-activated protein kinase signaling. Int Rev Neurobiol 59, 201-220.
Lawrence, T., Gilroy, D. W., Colville-Nash, P. R., and Willoughby, D. A. (2001). Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 7, 1291-1297.
Lee, S. C., Liu, W., Dickson, D. W., Brosnan, C. F., and Berman, J. W. (1993). Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 150, 2659-2667.
Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A. S., Vila, M., McAuliffe, W. G., Dawson, V. L., Dawson, T. M., and Przedborski, S. (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5, 1403-1409.
Ling, E. A., Kaur, C., and Wong, W. C. (1992). Expression of major histocompatibility complex antigens and CR3 complement receptors in activated microglia following an injection of ricin into the sciatic nerve in rats. Histol Histopathol 7, 93-100.
Luth, H. J., Holzer, M., Gartner, U., Staufenbiel, M., and Arendt, T. (2001). Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res 913, 57-67.
Marcus, J. S., Karackattu, S. L., Fleegal, M. A., and Sumners, C. (2003). Cytokine-stimulated inducible nitric oxide synthase expression in astroglia: role of Erk mitogen-activated protein kinase and NF-kappaB. Glia 41, 152-160.
Martin, E., Nathan, C., and Xie, Q. W. (1994). Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med 180, 977-984.
Matsuo, M., Hamasaki, Y., Fujiyama, F., and Miyazaki, S. (1995). Eicosanoids are produced by microglia, not by astrocytes, in rat glial cell cultures. Brain Res 685, 201-204.
McGeer, P. L., Itagaki, S., Boyes, B. E., and McGeer, E. G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285-1291.
Means, T. K., Golenbock, D. T., and Fenton, M. J. (2000). The biology of Toll-like receptors. Cytokine Growth Factor Rev 11, 219-232.
Minghetti, L., and Levi, G. (1995). Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J Neurochem 65, 2690-2698.
Nakajima, K., Tohyama, Y., Kohsaka, S., and Kurihara, T. (2004). Protein kinase C alpha requirement in the activation of p38 mitogen-activated protein kinase, which is linked to the induction of tumor necrosis factor alpha in lipopolysaccharide-stimulated microglia. Neurochem Int 44, 205-214.
Nguyen, M. D., D'Aigle, T., Gowing, G., Julien, J. P., and Rivest, S. (2004). Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 24, 1340-1349.
Nguyen, M. D., Julien, J. P., and Rivest, S. (2002). Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3, 216-227.
Nunan, J., and Small, D. H. (2000). Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483, 6-10.
Nunokawa, Y., Oikawa, S., and Tanaka, S. (1996). Human inducible nitric oxide synthase gene is transcriptionally regulated by nuclear factor-kappaB dependent mechanism. Biochem Biophys Res Commun 223, 347-352.
Perry, V. H. (1994). Modulation of microglia phenotype. Neuropathol Appl Neurobiol 20, 177.
Qin, H., Wilson, C. A., Lee, S. J., Zhao, X., and Benveniste, E. N. (2005). LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-1alpha in macrophages and microglia. Blood 106, 3114-3122.
Raine, C. S. (1994). Multiple sclerosis: immune system molecule expression in the central nervous system. J Neuropathol Exp Neurol 53, 328-337.
Reimann, T., Buscher, D., Hipskind, R. A., Krautwald, S., Lohmann-Matthes, M. L., and Baccarini, M. (1994). Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. J Immunol 153, 5740-5749.
Rogers, J., Luber-Narod, J., Styren, S. D., and Civin, W. H. (1988). Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol Aging 9, 339-349.
Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., and Ball, M. J. (1993a). beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A 90, 10836-10840.
Roher, A. E., Palmer, K. C., Yurewicz, E. C., Ball, M. J., and Greenberg, B. D. (1993b). Morphological and biochemical analyses of amyloid plaque core proteins purified from Alzheimer disease brain tissue. J Neurochem 61, 1916-1926.
Saha, R. N., and Pahan, K. (2006). Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8, 929-947.
Sanghera, J. S., Weinstein, S. L., Aluwalia, M., Girn, J., and Pelech, S. L. (1996). Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol 156, 4457-4465.
Shen YC, C. C., Wang YH, Chen CF, Chou YC, Lu MK (2004a). Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett 231, 137-143.
Shen YC, W. Y., Chou YC, Chen CF, Lin LC, Chang TT, Tien JH, Chou CJ. (2004b). Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med 70, 310-314.
Sriram, K., Matheson, J. M., Benkovic, S. A., Miller, D. B., Luster, M. I., and O'Callaghan, J. P. (2002). Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. Faseb J 16, 1474-1476.
Streit, W. J. (2004). Microglia and Alzheimer's disease pathogenesis. J Neurosci Res 77, 1-8.
Streit, W. J., Graeber, M. B., and Kreutzberg, G. W. (1988). Functional plasticity of microglia: a review. Glia 1, 301-307.
Tan, J., Town, T., Mori, T., Wu, Y., Saxe, M., Crawford, F., and Mullan, M. (2000). CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 20, 7587-7594.
Thanos, D., and Maniatis, T. (1995). NF-kappa B: a lesson in family values. Cell 80, 529-532.
Wang, G. J., Tseng, H. W., Chou, C. J., Tsai, T. H., Chen, C. T., and Lu, M. K. (2003a). The vasorelaxation of Antrodia camphorata mycelia: involvement of endothelial Ca(2+)-NO-cGMP pathway. Life Sci 73, 2769-2783.
Wang, W., Ji, P., and Dow, K. E. (2003b). Corticotropin-releasing hormone induces proliferation and TNF-alpha release in cultured rat microglia via MAP kinase signalling pathways. J Neurochem 84, 189-195.
Weinstein, S. L., Sanghera, J. S., Lemke, K., DeFranco, A. L., and Pelech, S. L. (1992). Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem 267, 14955-14962.
Xie, Z., Wei, M., Morgan, T. E., Fabrizio, P., Han, D., Finch, C. E., and Longo, V. D. (2002). Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci 22, 3484-3492.
Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L. (1989). Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245, 417-420.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林易典,德國民法點新舊法部分譯文,,月旦法學雜誌第99期,2003年8月。
2. 米健,論侵權行爲歸責原則的兩元制定式─從羅馬法到現代法的歷史考察,月旦民商法雜誌第9期,2005年9月。
3. 向明恩,德國民法一百年之回顧與展望,東吳法律學報13卷1期,2001年8月。
4. 朱柏松,侵權行為理論發展之新趨勢,法學叢刊第153期,1994年1月。
5. 王澤鑑,財產上損害賠償(二),月旦法學雜誌第131期,2006年4月。
6. 王澤鑑,損害概念及損害分類,月旦法學雜誌第124期,2005年9月。
7. 王千維,論可分債務、連帶債務與不真正連帶債務(上),國立中正大學法學集刊第7期,2002年4月。
8. 吳瑾瑜,受僱人執行職務之行為—評最高法院八十九年度台上字第一一六一號判決,中原財經法學第6期,2001年6月。
9. 陳彥良,未明文法律制度之法典化—德國民法上的締約過失,臺北大學法學論叢第56期,2005年6月。
10. 陳愛娥,行政院版「行政罰法(草案)」關於處罰對象之規定方式的檢討,月旦法學雜誌第111期,2004年8月。
11. 溫汶科,僱用人賠償責任之研究,法學叢刊第87期,1976年7月。
12. 楊佳元,侵權行為過失責任之體系與一般要件,臺北大學法學論叢第56期,2005年6月。
13. 楊佳元,危險責任,臺北大學法學論叢第57期,2005年12月。
14. 劉士豪,勞動關係中雇主受領勞務遲延之研究,臺北大學法學論叢第57期,2005年12月。
15. 歐高敦,破解西進大陸的三個迷思,天下雜誌第265期,2002年12月15日,頁38。