跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉盈琦
研究生(外文):Yin-Chi Yeh
論文名稱:ComparisonsofVariableSelectionMethodsforClassificationTreeswithMultivariateResponses
論文名稱(外文):Comparisons of Variable Selection Methods for Classification Trees with Multivariate Responses
指導教授:史玉山史玉山引用關係
指導教授(外文):Yu-Shan Shih
學位類別:碩士
校院名稱:國立中正大學
系所名稱:統計科學所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:30
中文關鍵詞:Classification TreeMultivariateVariable Selection
外文關鍵詞:MultivariateVariable SelectionClassification Tree
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
Two selection methods were proposed for classification trees with
multivariate responses. Both methods declare that their variable
selection methods are unbiased. So, this makes us to study the
performance of the two methods. Simulation results show that the
method of Lee & Shih (2006) is better than the method of Hothorn,
Hornik & Zeileis (2006) in most parts of the simulations.
Two selection methods were proposed for classification trees with
multivariate responses. Both methods declare that their variable
selection methods are unbiased. So, this makes us to study the
performance of the two methods. Simulation results show that the
method of Lee & Shih (2006) is better than the method of Hothorn,
Hornik & Zeileis (2006) in most parts of the simulations.
1 Introduction 1
2 Methods of selecting variables 3
2.1 CT method . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 PT method . . . . . . . . . . . . . . . . . . . . . . . 4
3 Simulations 7
3.1 Split selection bias . . . . . . . . . . . . . . . . . . . 7
3.1.1 Independent components of Y versus independent
X0s . . . . . . . . . . . . . . . . . . . 8
3.1.2 Dependent components of Y versus independent
X0s . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Independent components of Y versus dependent
X0s . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Dependent components of Y versus dependent
X0s . . . . . . . . . . . . . . . . . . . . . 11
3.2 Selection power . . . . . . . . . . . . . . . . . . . . . 11
4 Conclusion 18
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification
and Regression Trees, Wadsworth Publishing Co Inc.
Hothorn, T., Hornik, K. & Zeileis, A. (2006). Unbiased recursive partitioning: A
conditional inference framework, Journal of Computational and Graphical
Statistics 15: 651–674.
Kim, H. & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits,
Journal of the American Statistical Association 96: 589–604.
Lee, T.-H. & Shih, Y.-S. (2006). Unbiased variable selection for classification trees
with multivariate responses, Computational Statistics and Data Analysis
51: 659–667.
Leisch, F. & Weingessel, A. (2007). Bindata: Generation of Artificial Binary
Data. R package version 0.9-14.
Loh, W.-Y. & Shih, Y.-S. (1997). Split selection methods for classification trees,
Statistica Sinica 7: 815–840.
Loh, W.-Y. & Vanichsetakul, N. (1988). Tree-structured classification via generalized
discriminant analysis, Journal of the American Statistical Association
83: 715–728.
Noh, H. G., Song, M. S. & Park, S. H. (2004). An unbiased method for constructing
multilabel classification trees, Computational Statistics and Data
Analysis 47: 149–164.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann
Publishers Inc., San Mateo, California.
R Development Core Team (2007). R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0.
*http://www.R-project.org
Siciliano, R. & Mola, F. (2000). Multivariate data analysis and modeling through
classification and regression trees, Computational Statistics and Data Analysis
32: 285–301.
Simonoff, J. S. (2003). Analyzing Categorical Data, Springer.
Strasser, H. &Weber, C. (1999). The asymptotic theory of permutation statistics,
Mathematical Methods of Statistics 8: 220–250.
Zhang, H. (1998). Classification trees for multiple binary responses, Journal of
the American Statistical Association 93: 180–193.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top