|
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and Regression Trees, Wadsworth Publishing Co Inc. Hothorn, T., Hornik, K. & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework, Journal of Computational and Graphical Statistics 15: 651–674. Kim, H. & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits, Journal of the American Statistical Association 96: 589–604. Lee, T.-H. & Shih, Y.-S. (2006). Unbiased variable selection for classification trees with multivariate responses, Computational Statistics and Data Analysis 51: 659–667. Leisch, F. & Weingessel, A. (2007). Bindata: Generation of Artificial Binary Data. R package version 0.9-14. Loh, W.-Y. & Shih, Y.-S. (1997). Split selection methods for classification trees, Statistica Sinica 7: 815–840. Loh, W.-Y. & Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis, Journal of the American Statistical Association 83: 715–728. Noh, H. G., Song, M. S. & Park, S. H. (2004). An unbiased method for constructing multilabel classification trees, Computational Statistics and Data Analysis 47: 149–164. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Mateo, California. R Development Core Team (2007). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org Siciliano, R. & Mola, F. (2000). Multivariate data analysis and modeling through classification and regression trees, Computational Statistics and Data Analysis 32: 285–301. Simonoff, J. S. (2003). Analyzing Categorical Data, Springer. Strasser, H. &Weber, C. (1999). The asymptotic theory of permutation statistics, Mathematical Methods of Statistics 8: 220–250. Zhang, H. (1998). Classification trees for multiple binary responses, Journal of the American Statistical Association 93: 180–193.
|