跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪毓懋
研究生(外文):Yu-Mao Hung
論文名稱:對離散餘弦轉換係數使用鄰近關係編碼之影像壓縮
論文名稱(外文):Context-Based Entropy Coding of DCT Coefficients for Image Compression
指導教授:張世旭
指導教授(外文):Shin-Hsu Chang
學位類別:碩士
校院名稱:大葉大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:42
中文關鍵詞:嵌入式離散餘弦轉換鄰近關係編碼交流係數預測
外文關鍵詞:Embedded DCTContext codingAC Coefficient Predicted
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一個對離散餘弦轉換係數使用鄰近關係編碼。主要的壓縮步驟為:(1)將影像切割為8×8大小的區塊,分別對每一個區塊作離散餘弦轉換(DCT);(2)求出適合的量化係數,將DCT係數量化;(3)利用直流係數(DC)預測交流係數(AC),得到AC誤差係數;(4)對DC係數使用訊號誤差編碼(DPCM),得到DC誤差係數;(5)對DCT係數使用Context編碼。Context編碼的模式分別有:(1)零編碼(2)精煉編碼(3)可變長度編碼。由於進行壓縮時會重新計算量化係數,不需要額外的量化表,使得利用量化係數比使用固定量化表的壓縮效果好。在使用算術編碼時配合鄰近關係能有效的提升壓縮的效率。並且根據離散餘弦轉換的特性,利用直流係數對交流係數預測可以提升壓縮的效率。由於經過以區塊為基礎的函式轉換,因此當影像過度壓縮後,重建影像將會產生明顯的區塊效應(Blocking Effect)。而使用後處理的步驟能夠提高壓縮的影像品質,並且能提升視覺上的效果。
This paper proposes Context-based entropy coding of DCT coefficients for image compression. The main compression step is: (1)Divide the input image into the 8×8 block, use Discrete Cosine Transform(DCT) for every block; (2)Find out suitable quantization coefficient, quantize DCT coefficient; (3)Use the Direct Current coefficient(DC) to predict that Alternating Current(AC) coefficient, get AC error coefficient; (4)Use the differential pulse code modulation(DPCM) to DC coefficient, get DC error coefficient; (5)Context coding is used in DCT coefficient. Models of Context Coding: (1) Zero Coding, (2) Refine Coding, (3) Run-length Coding. When enter compression step, quantization coefficient will be recomputed. The performance which doesn’t need extra quantization table is better than the performance which needs to use fixed quantization table. When using arithmetic coding, consider the relation of coefficient can improve the performance of compression. According to the characteristic of Discrete Cosine Transform, using DC coefficient to predict AC coefficient can improve the performance of compression. Because coefficient transform is one kind of block-based coefficient transform. When image would be compressed overly, the restructure image will cause distinct Blocking Effect. Post-processing can improve the performance of compression.
第1章 緒論 1
1.1 影像壓縮簡介 1
1.2 研究動機與目的 2
1.3 文獻探討 3
1.4 論文架構 5
第2章 相關研究 6
2.1 EZDCT和ezhdct 6
2.2 EBCOT 9
2.3 算數編碼 12
第3章 演算法架構 15
3.1 編碼流程 16
3.1.1 DCT轉換與係數分類 16
3.1.2 DCT係數量化 17
3.1.3 交流係數預測 17
3.1.4 直流係數預測 19
3.1.5 嵌入式編碼流程 19
3.1.6 未重要係數編碼 20
3.1.7 精煉編碼 23
3.1.8 Run-length Coding 23
3.2 解碼流程 27
第4章 針對區塊效應進行後處理 28
4.1 邊的探測 28
4.2 區塊契合 29
第5章 實驗結果比較 31
第6章 結論與未來工作 38
參考文獻 39
[1]J. In, S. Hsiarani and F. kossentini,“ On RD optimized progressive image coding using JPEG,” IEEE Transactions on Image Processing, Vol. 8, No. 11, Nov. 1999, pp.1630-1638, Nov. 1999.
[2]Ying Chen and Pengwei Hao,“ Integer Reversible Transformation to Make JPEG Lossless,” IEEE International Conference on Signal Processing, Vol.1, pp. 835- 838, Sept. 2004.
[3]D.M. Monro and G.J. Dickson,“ Zerotree coding of DCT coefficients,” International Conference on Image Processing, Vol. 2, pp. 625-628, Oct 1997.
[4]T.D. Tran,“ The binDCT: fast multiplierless approximation of the DCT,” IEEE Signal Processing Letters, Vol. 7, No. 6, pp.141-144, Jun. 2000.
[5]A. Said and W.A. Pearlman,“ A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp.243 - 250, June 1996.
[6]Chao Xu, “EBCOT-based discrete wavelet transform scheme with row-overlapped Z-scan,” IEEE Transactions on Consumer Electronics, pp. 451-452, Jane 2005.
[7]William A. Pearlman, Asad Islam, Nithin Nagaraj, and Amir Said,“ Efficient, low-complexity image coding with a set-partitioning embedded block coder,” IEEE Transactions on Circuits and Systems for Video Technology, Vol.14, No.11, pp.1219 - 1235, Nov. 2004.
[8]Amir Said,“ Arithmetic Coding,” in Lossless Compression Handbook, (K. Sayood, Ed.), Academic Press, San Diego, CA, 2003.
[9]Amir Said, Introduction to Arithmetic Coding Theory and Practice,Hewlett-Packard Laboratories Report, HPL-2004-76, Palo Alto, CA, April 2004.
[10]Jooheung Lee, N. Vijaykrishnan, M.J. Irwin, and R. Chandramouli,“ Block-based frequency scalable technique for efficient hierarchical coding,” IEEE Transactions on Signal Processing, Vol. 54, No. 7, pp. 2559- 2566, July 2006.
[11]Hyun Wook Park and Yung Lyul Lee,“ A postprocessing method for reducing quantization effects in lowbit-rate moving picture coding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 1, pp.1051-8215, Feb. 1999.
[12]Ying Luo and Rabab K. Ward,“ Removing the blocking artifacts of block-based DCT compressed images,” IEEE Transactions on Image Processing, Vol. 12, No. 7, pp. 838- 842, July 2003.
[13]Geoffrey Davis and Sumit Chawla,“ Significance Tree Quantization of the Discrete Cosine Transform,” IEEE International Conference on Image Processing, Vol. 1, pp. 600-603, Oct. 1997.
[14]Junqiang Lan and Xinhua Zhuang,“ Embedded image compression using DCT based subband decomposition and SLCCA data organization,” IEEE Workshop on Multimedia Signal Processing, pp. 81-84, Dec. 2002.
[15]Jiankun Li, Jin Li and C.-C. J. Kuo,“ An embedded DCT approach to progressive image compression,” IEEE International Conference on Image Processing, Vol. 1, pp. 201-204, Sept. 1996.
[16]D. Nister and C. Christopoulos,“ An embedded DCT-based still image coding algorithm,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.5, pp.2617-2620, May 1998.
[17]Yan Yusong, Wang Chunmei, Su Guangda, and Shi Qingyun,“ Invertible Integer DCT Applied on Progressive until Lossless Image Compression,” IEEE International Symposium on Image and Signal Processing and Analysis, Vol. 2, pp. 1018-1023, Sept. 2003.
[18]Yan Yusong, Wang Chunmei, Su Guangda, and Shi Qingyun,“ Invertible integer DCT applied on progressive until lossless image compression,” Image and Signal Processing and Analysis, vol. 2, pp.1018- 1023, Sept. 2003.
[19]R. Singh and A. Ortega,“ Lookahead Search for Lossy Context-Based Adaptive Entropy Coding,” International Conference on Image Processing,Vol. 3, pp. 845-848, Sep. 2000.
[20]Wilhelm Berghorn ,Tobias Boskamp,Markus Lang,and Heinz-Otto Peitgen,“ Context Conditioning and Run-Length Coding for Hybrid, Embedded Progressive Image Coding,” IEEE Transactions on Image Processing,Vol. 10,No. 12,Dec. 2001.
[21]Bruno Aiazzi, Luciano Alparone, and Stefano Baronti,“ Context Modeling for Near-Lossless Image Coding,” IEEE Signal Processing Letters, Vol. 9, No. 3, March 2002.
[22]Debin Zhao, Dapeng Zhang, and Wen Gao,“ Embedded Image Coding Based on Hierarchical Discrete Cosine Transform,” Journal of Software, Vol.12, No.9, pp. 1287-1294, Sept. 2001.
[23]C. Tu and T.D. Tran,“ Context-based entropy coding of block transform coefficients for image compression,” IEEE Transactions on Image Processing, Vol.11, No.11, pp.1271-1283, Nov. 2002.
[24]C.A. Gonzales, L. Allman,T. McCarthy, P. Wendt, and A.N. Akansu,“ DCT coding for motion video storage using adaptive arithmetic coding,” Signal Processing: Image Communication, Vol. 2, No. 2, pp. 145-154, 1990.
[25]Shizhong Liu and Alan C. Bovik,“ Foveation embedded DCT domain video transcoding,” Journal of Visual Communication and Image Representation, Vol.16, No.6, pp. 643-667, December 2005.
[26]R. Ashin, A. Morimoto and R.Vaillancourt,“ Image compression with multiresolution singular value decomposition and other methods,” Mathematical and Computer Modelling, Vol. 41, No. 6-7, pp. 773-790, May 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top