跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊佳豪
研究生(外文):CHIA HAO CHUANG
論文名稱:新型並聯式複合電動重型機車之性能分析與電控系統研製
論文名稱(外文):Development of Electrical Control System and Performance Analysis for a New Parallel Hybrid Electric Heavy Motorcycle
指導教授:蔡耀文
指導教授(外文):Yao-Wen Tsai
學位類別:碩士
校院名稱:大葉大學
系所名稱:機電自動化研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:90
中文關鍵詞:並聯式複合電動車輛數位訊號處理器可變結構系統能量管理策略線性矩陣不等式
外文關鍵詞:Hybrid electric heavy motorcycle (HEV)Sliding modeVariable Structure Control (VSC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來由於環保意識抬頭及能源危機問題,使得節省能源以及降低污染變成非常迫切需要解決的問題。所以發展零排氣污染的環保電動車輛成為一個極重要的課題,但由於續航力與性能不佳,影響純電動車輛的市場價值。在另一方面,因為複合電動車輛(HEV)不只可以節省燃料,同時也可以減少環境污染,在現今世界上逐漸佔有舉足輕重的位置。
本論文主要研究的對象是複合動力重型機車,包括研發一種新型並聯式複合電動重型機車的完整電控系統與性能分析,其中包含:(1)整體系統的模擬分析:模擬與分析車輛在各種路面及負載狀況下運轉特性;(2)完整電控系統實作:使用數位訊號處理器(DSP)為主控制器,控制車輛在各種行車模式下之運轉,均能維持內燃機在最佳運轉區操作,達成節省能源與降低污染之目的。
本論文的理論分析是藉由線性矩陣不等式(LMI)方法應用在非匹配不確定輸出回授可變結構系統(VSS),經由此理論推導之新型控制器,能有效減少非匹配不確定成份的不良影響,保證系統穩定而且性能良好。
本文之電控系統與新型可變結構控制器已經在並聯式複合電動重型機車的平台中實現,而且也完整組裝一台原型車,經實際操作與實驗證明此平台與原型車都能符合預期目標與系統效能。
With growing concerns over environmental protection and energy conservation, the hybrid electric vehicle (HEV) has taken center stage. The electric vehicle is a transportation implement of zero emission; however, its performance and driving distance are not acceptable in most cases. Thus the electric vehicle is not accepted extensively. On the other hand, the hybrid electric vehicle (HEV) not only achieves minimum fuel consumption and minimum emissions but also reduce pollution. The hybrid electric heavy motorcycle would have the merits of energy-saving.
In this study investigates a new parallel hybrid electric heavy motorcycle, the aim of research is integral performance analysis and electrical control system. Its includes:(1) The simulation and performance analysis of integral systems: to simulate and analyze situations which the vehicle operate under variations of vehicle load; (2) Electrical control system: the major controller of the systems used by Digital Signal Processor (DSP) and control the vehicle under variations of driving pattern. In order to achieves minimum fuel consumption and minimum emissions, the internal combustion engine always operates at the sweet spot.
The linear matrix inequality (LMI) method is applied in the design of dynamic output feedback controller for mismatched uncertain variable structure system (VSS). Using this new LMI theory based output feedback variable structure control (VSC), the mismatched variable structure systems is asymptotically stable with better performance. The electric control system and major controller of the hybrid electric vehicle have been achieved on the experimental platform. The prototype of hybrid vehicle is also established. The performances of the new hybrid electric vehicle are proved by experiment and operate actuality.
COVER
CREDENTIAL
AUTHORIZATION LETTERS
ABSTRACT (CHINESE)
ABSTRACT (ENGLISH)
ACKNOWLEDGMENT
CONTENTS
LIST OF FIGURES
LIST OF TABLES
ABBREVIATIONS AND SYMBOLS

Chapter 1
INTRODUCTION
1.1 Motivation 1
1.2 Parallel Hybrid System
1.3 Series Hybrid System
1.4 Series-Parallel Hybrid System
1.5 Newly Parallel-type Hybrid Electric System
1.6 Advantage and Drawback of Series and Parallel Hybrid System
Chapter 2
FRAMEWORK AND ENERGY MANAGEMENT STRATEGY OF THE NEW
PARALLEL-TYPE HYBRID ELECTRIC SYSTEM
2.1 The components of new parallel-type Hybrid Electric System
2.1.1 Electric Motor
2.1.2 Internal Combustion Engine
2.1.3 Magnetism Powder Type Break Unit
2.2 The Framework of the New Parallel-type Hybrid Electric System
2.3 Power Output of Electric Motor Only
2.4 Power Output of Internal Combustion Engine Only
2.5 Dual Powers Output By Electric Motor and Internal Combustion Engine
2.6 Low Power Control Procedure
2.7 Medium Power Control Procedure
2.8 High Power Control Procedure
Chapter 3
ESTABLISHING SYSTEM DYNAMIC EQUATIONS AND MODELS
3.1 The Electric Motor Model
3.2 The Internal Combustion Engine Model
3.3 Dual Energy Integration Mechanism Model
3.4 Vehicles Travel Environment Model
3.4.1 Acceleration Resistance
3.4.2 Rolling Resistance
3.4.3 Air Resistance
Chapter 4
DYNAMIC OUTPUT FEEDBACK CONTROLLERS USING LMI THEORY FORMISMATCHED UNCERTAIN VARIABLE STRUCTURE SYSTEMS
4.1 Introduction
4.2 Description of the Problem
4.2.1 Stability in the Sliding Mode
4.2.2 The Hitting Phase Design
Chapter 5
EXPERIMENT AND SIMULATION RESULT
5.1 Simulation result
5.2 Experiment Result
5.2.1 Low Power Control Procedure
5.2.2 Medium Power Control Procedure
5.2.3 High Power Control Procedure
Chapter 6
CONCLUTIONS
APPENDIXES
REFERENCE
[1]Onoda S, Lukic SM, Asiri AN, Emadi A. A PSIM-based modeling tool for conventional, electric, and hybrid-electric vehicles studies. In: Vehicular Technology Conference, VTC 2002-Fall IEEE, vol. 3, 2002, pp. 1676-80.
[2]Chau KT, Wong YS. Overview of power management in hybrid-electric vehicles.-Energy Conversion Manage 2002, pp:1953-68.
[3]Xiaoling H, Hodgson JW. Modeling and simulation for hybrid-electric vehicles. Intelligent Transportation Systems, IEEE Trans 2002, pp:235-43.
[4]Xiaoling H, Hodgson JW. Modeling and simulation for hybrid-electric vehicles. II. Modeling. Intelligent Transportation Systems, IEEE Trans 2002, pp:244-51.
[5]Schouten NJ, Salman MA, Kheir NA. Energy management strategies for parallel hybrid-vehicles using fuzzy logic. Control Eng Practice 2003, pp:171–7.
[6]Ron Hodkinson and John Fenton ”Lightweight electric/hybrid vehicle design” Butterworth-Heinemann,2001.
[7]Fan zhen lin,” Study of Dynamic Simulation and Control of a New Parallel Hybrid Electric Power System”, Department of Mechanical and Automation Engineering College of Engineering Dayeh university,2005.
[8]Su hong yi,” Study of a New Parallel Hybrid Electric Power System”, Department of Mechanical and Automation Engineering College of Engineering Dayeh university,2005.
[9]H. H. Choi, “An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,” Automatica, Vol. 34, No. 8, pp. 1015-1020, 1998.
[10]A. Packard, K. Zhou, P. Pandey and G. Becker, “A collection of robust control problems leading to LMIs,” IEEE Conf. on Decision and Control, pp. 1245-1250, 1991.
[11]S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequalitiesin System and Control Theory,” SIAM, Philadelphia, 1994.
[12]P. P. Khargonekar, I. R. Petersen and K. Zhou, “Robust stabilization of uncertain linear systems: quadratic stabilizability and control theory,” IEEE Trans. Automat. Control, Vol. 35, pp. 356-361, 1990.
[13]El-Ghezawi. O. M. E, Zinober. A. S. I and Billings. S. A, “Analysis and design of variable structure systems using a geometric approach,” International Journal of control, Vol. 38, pp. 657-671, 1983.
[14]S. H. Zak, and S. Hui, “On variable structure output feedback controllers for uncertain dynamic systems,” IEEE Transactions on Automation Control, AC-38, pp. 1509-1512, 1993.
[15]K. K. Shyu, Y. W. Tsai, and C. K. Lai, “A dynamic output controllers for mismatched uncertain variable structure systems,” Automatica, Vol. 37, pp. 775-779, 2000.
[16]M. L Chan, C. W. Tao and T. T. Lee, “Sliding mode controller for linear systems with mismatched time-varying uncertainties,” Journal of The Franklin Institute, 337, pp. 105-115, 2000.
[17]J. C. Shen, “Designing stabilizing controllers and observers for uncertain linear systems with time-varying delay,” IEE Proc, D144(4), pp. 331-334, 1997.
[18]Nagrath and Gopal “Control Systems Engineering”, 中央圖書出版社,1985.
[19]K. David Huang, Yao-Wen Tsai, Shun-Chang Chang, Chen-YangWua, Che-Chuan Lub. Study of System Energy Management of Parallel Hybrid Electric Heavy Motorcycle. AVEC 2006

[20]S.C. Tzeng, K.D. Huang and C.C. Chen, "Optimization of the Dual Energy Integration Mechanism in a Parallel-type Hybrid Vehicle," Applied Energy, Vol. 80, Issue 3, pp.225-245, Feb. 2005. (EI)
[21]Yao-Wen Tsai, Shun-Chang Chang, K. David Huang, Ching-Huang Chang “Development of Real-Time Monitor system of Test Bench for the Parallel Hybrid Electric Heavy Motorcle”, 2006 Procedings of AVEC, pp.20-24.
[22]Kuo-Kai Shyu, Yung Yu, Kuang-Chiung Chang “Dynamic Output Feedback Sliding Mode Design for Linear Unmatched Uncertain Systems”, International Journal of Control 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top