(54.173.237.152) 您好!臺灣時間:2019/02/22 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:黃俊豪
研究生(外文):Chun-Hao Huang
論文名稱:以區別共同向量進行臉部表情辨識
論文名稱(外文):Facial Expression Recognition with Discriminative Common Vector
指導教授:王元凱王元凱引用關係
指導教授(外文):Yuan-Kai Wang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:36
中文關鍵詞:人臉表情辨識
外文關鍵詞:Discriminative Common VectorHidden Markov Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:484
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
近年來在人機互動中,臉部表情辨識系統已成為很重要的議題,不論是人與電腦的互動(HCI)或者人與機器人的互動上(HRI)皆是如此。而臉部表情辨識系統中,特徵的擷取是重要的一環。本論文中我們應用區別共同向量來達到表情辨識中特徵的擷取。我們辨識包括六個基本的表情,包括高興、悲傷、生氣、噁心、害怕和驚訝。以區別共同向量的特徵抽取方法,不但可以將高維度的影像資訊降階至低維度空間,並將它們做區別分類,讓辨識階段能更容易成功。最後再以隱藏式馬可夫模型分析其時間軸上的資訊,達到臉部表情辨識的效果。
Recently facial expression recognition system has become an important issue in both human-computer interaction (HCI) and human-robot interaction (HRI). It is an important issue to extract features from face images to recognize facial expression. In this paper, we apply a face feature extraction approach, namely discriminative common vectors, for the recognition of the six basic expressions including happy, sad, angry, disgust, fear and surprise. By applying discriminative common vector, we can reduce the dimensionality of image and classify them in a lower dimension which would be useful in later recognition procedure. Then we use HMM as our classifier to find the time series information of the feature vector projected by common vector.
Abstract (in Chinese) i
Abstract ii
Acknowledgement (in Chinese) iii
Contents iv
List of tables v
List of figures vi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 1
1.3 Review of Literature 2
Chapter 2 Spatial-Temporal Common Vector 7
2.1 Discriminative Common Vector (DCV) 7
2.2 Temporal DCV 11
Chapter 3 The Expression Recognition System 15
3.1 System Overview 15
3.2 Preprocessing 18
3.2.1 Face Region 18
3.2.2 Optical Flow 20
3.3 Recognition 21
3.3.1 Continuous Hidden Markov Model 23
Chapter 4 Experimental Results 29
4.1 Database 29
4.2 State Number Comparison 30
4.3 Compared with voting 31
Chapter 5 Conclusions 34
References 35
[1]B. Fasel and J. Luettin, "Automatic Facial Expression Analysis: A Survey," Pattern Recognition, vol. 33, pp. 259-275, 2002.
[2]M. Pantic and L. J. M. Rothkrantz, "Automatic analysis of facial expressions: the state of the art," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1424-1445, 2000.
[3]P. S. Aleksic and A. K. Katsaggelos, "Automatic facial expression recognition using facial animation parameters and multistream HMMs," IEEE Transactions on Information Forensics and Security, vol. 1, pp. 3-11, 2006.
[4]I. Cohen, N. Sebe, A. Garg, L. S. Chen, and T. S. Huang, "Facial Expression Recognition from Video Sequence: Temporal and Static Modeling," Computer Vision and Image Understanding, vol. 91, pp. 160-187, 2003.
[5]H. Kobayashi and F. Hara, "Facial interaction between animated 3D face robot and human beings," IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3732-3737, 1997.
[6]M. Pantic and L. J. M. Rothkrantz, "Expert System for Automatic Analysis of Facial Expressions," Image and Vision Computing, vol. 18, pp. 881-905, 2000.
[7]P. Ekman and W. Friesen, "Pictures of facial affect," Consulting Psychologist Press, 1976.
[8]J. F. Cohn, A. J. Zlochower, J. J. Lien, and T. Kanade, "Feature-point tracking by optical flow discriminates subtle differences in facial expression," Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition pp. 396-401, 1998.
[9]S. Kimura and M. Yachida, "Facial expression recognition and its degree estimation," Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 295-300, June 1997.
[10]K. Anderson and P. W. McOwan, "A real-time automated system for the recognition of human facial expressions," IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 36, pp. 96-105, 2006.
[11]W. A. Fellenz, J. G. Taylor, N. Tsapatsoulis, and S. Kollias, "Comparing template-based, feature-based and supervised classification of facial expressions from static images," Proc. Circuits, System Communications and Computers, pp. 5331-5336, 1999.
[12]C. Padgett and G. Cottrell, "Representing Face Images for Emotion Classication," Proc. Conf. Advances in Neural Information Processing Systems, pp. 894-900, 1996.
[13]M. Yeasin, B. Bullot, and R. Sharma, "Recognition of facial expressions and measurement of levels of interest from video," IEEE Transactions on Multimedia, vol. 8, pp. 500-508, 2006.
[14]J. Yu and B. Bhanu, "Evolutionary feature synthesis for facial expression recognition," Pattern Recognition Letters, vol. 27, pp. 1289-1298, 2006.
[15]X. W. Chen and T. Huang, "Facial expression recognition: A clustering-based approach," Pattern Recognition Letters, vol. 24, pp. 1295-1302, 2003.
[16]Y. Zhu, L. C. D. Silva, and C. C. Ko, "Using moment invariants and HMM in facial expression recognition," Pattern Recognition Letters, vol. 23, pp. 83-91, 2001.
[17]M. Yeasin and Y. Kuniyoshi, "Detecting and tracking human face and eye using an space-varying sensor and an active vision head," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 168-173, 2000.
[18]H. Cevikalp, M. Neamtu, M. Wilkes, and A. Barkana, "Discriminative Common Vectors for Face Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 4-13, 2005.
[19]L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, "A new LDA-based face recognition system which can solve the small sample size problem," Pattern Recognition, vol. 33, pp. 1713-1726, 2000.
[20]P. Viola and M. Jones, "Robust real-time object detection," Second Interna-tional Workshop on Statistical Learing and Computational Theories of Vision Modeling,Learning, Computing and Sampling, July 2001.
[21]B. Lucas and T. Kanade, "An Iterative Image Registration Technique with an Application to Stereo Vision," Proc. of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674-679, 1981.
[22]L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proceedings of the IEEE, vol. 77, pp. 257-286, February 1989.
[23]T. Kanade, J. F. Cohn, and T. Yingli, "Comprehensive database for facial expression analysis," Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46-53, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 宋秉忠、張元祥、陳怡萍(2005,8)。日月潭概念股 下一波經濟奇蹟。遠見雜誌,49-60。
2. 宋秉忠、張元祥、陳怡萍(2005,8)。日月潭概念股 下一波經濟奇蹟。遠見雜誌,49-60。
3. 宋秉明(1996)。綠島發展生態觀光之規畫。戶外遊憩研究,9(4),31-40。
4. 宋秉明(1996)。綠島發展生態觀光之規畫。戶外遊憩研究,9(4),31-40。
5. 李素馨、蔡淑美(1995)。民眾參與在觀光規劃中之運用。觀光研究學報。1(1),66-79。
6. 李素馨、蔡淑美(1995)。民眾參與在觀光規劃中之運用。觀光研究學報。1(1),66-79。
7. 邱雯玲(1991)。湖濱觀光遊憩地理研究-以日月潭為例。戶外遊憩研究。4(1),35-66。
8. 邱雯玲(1991)。湖濱觀光遊憩地理研究-以日月潭為例。戶外遊憩研究。4(1),35-66。
9. 邱淑芬、蔡欣玲(1996)。德爾菲預測術-一種專家預測的護理研究方法。護理研究。4(1),92-98。
10. 邱淑芬、蔡欣玲(1996)。德爾菲預測術-一種專家預測的護理研究方法。護理研究。4(1),92-98。
11. 高俊雄(1996)。觀光休閒產業地方化推動模式之探討。觀光研究學報。2(1),1-12。
12. 高俊雄(1996)。觀光休閒產業地方化推動模式之探討。觀光研究學報。2(1),1-12。
13. 駱慧文、謝臥龍、王興耀與張永源(1992)。醫學教育主管心目中的良好醫者特質:懷德研究法之運用,高雄醫學科學雜誌,8(3),168-174。
14. 駱慧文、謝臥龍、王興耀與張永源(1992)。醫學教育主管心目中的良好醫者特質:懷德研究法之運用,高雄醫學科學雜誌,8(3),168-174。
15. 鄭琦玉(1995)。日月潭風景特定區遊客特性及遊憩需求型態分析。觀光研究學報,1(4),39-53。
 
系統版面圖檔 系統版面圖檔