跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鈞富
研究生(外文):Chun-fu Chang
論文名稱:添加微量矽元素對塊狀非晶質Zr53Cu30Ni9Al8玻璃形成能力與熱穩定性之研究
論文名稱(外文):Glass Forming Ability and Thermal Stability of the Zr53Cu30Ni9Al8 Based Bulk Metallic Glass Microalloyed With Silicon
指導教授:鄭憲清
指導教授(外文):Jason S. C. Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:128
中文關鍵詞:玻璃金屬塊狀非晶質合金玻璃形成能力熱穩定性
外文關鍵詞:thermal stabilityamorphous.metallic glassglass forming ability
相關次數:
  • 被引用被引用:3
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從Inoue的研究團隊與Johnson的研究群於1989年率先利用傳統金屬模鑄造方式製作出非貴金屬系的非晶質合金以來,自此開啟了塊狀非晶質合金廣泛實用化的契機。由於非晶質合金具有優良工程性能,如高抗拉強度、高彈性能、高的衝擊韌性及好的耐蝕性(鋯基合金)。本實驗合金成份為Zr53Cu30Ni9Al8是根據C.T.Liu教授實驗室所計算出較佳玻璃形成能力之合金成份,根據前人研究指出,添加矽元素於Zr65Al7.5Cu17.5Ni10合金中可提升薄帶之玻璃形成能力與熱穩定性,故本實驗以(Zr53Cu30Ni9 Al8)100-xSix非晶質合金作為研究主題,藉由下吸式銅模鑄造法成功製作出直徑2~6 mm棒材及2 mm板材,經XRD分析在低角度(30°~50°)呈現非晶質合金典型的寬廣繞射鋒。隨著矽含量增加玻璃形成能力與結晶溫度相對得到提升,此外添加矽之合金成份,其過冷液態區間之孕核時間均明顯延長。利用kissinger plot 計算出0.25 at%Si結晶活化能達295 kJ/mole,證明添加矽可增加Zr53Cu30Ni9Al8之玻璃形成能力與熱穩定性。機械性質方面,鋯基非晶質合金之硬度值隨著矽含量增加硬度值有增加趨勢,添加矽原子將增加其堆積密度因而提升其硬度,另外原子間的鍵結能力也是造成硬度增加原因之ㄧ, 由Tg、Tx隨之增加可得知原子間的鍵結能力。壓縮破裂強度約1900 MPa塑性變形量約3 %,試片破裂面與壓縮方向呈45°角,破斷面的觀察具有典型非晶質合金破斷面形態Vein patterns,塑性變形之試片表面具Shear bend。(Zr53Cu30Ni9Al8)99.75Si0.25在過冷液態區間Viscosity(η=σ/ε)約108~1011 Pa.s,做為未來塊狀非晶質合金應用在精密成型之基礎研究。
Since the research team of A. Inoue and the research team of W. L. Johnson leaded to discover a non-noble bulk metallic glass by conventional metal mold casting in 1989. The possibility of wide application for the metallic glasses was opened. Meanwhile, it has been reported that these bulk amorphous alloys exhibit good engineering properties of high tensile strength, high elastic energy, relatively high impact fracture energy, and high corrosion resistance for Zr-based amorphous alloys. Jang et al. has reported that adding silicon could effectively increase the activation energy of crystallization as well as increasing the incubation time for the Zr65Al7.5Cu17.5Ni10 base amorphous alloy. Therefore, the high GFA (glass forming ability) Zr53Cu30Ni9Al8 amorphous alloy which computationally designed by thermodynamics and deep eutectic methodology is selected as the base alloy to investigate the effect of microalloying with Si. The result of X-ray diffraction reveals that these entire (Zr53Cu30Ni9Al8)100-xSix alloy rods exhibit a typical amorphous diffraction pattern with only a broad maximum around 2θ of 30~50 degree. Both of GFA and Tx (crystallization temperature) of these (Zr53Cu30Ni9Al8)100-xSix alloys increases with the silicon addition. Moreover, the alloy exhibits much longer incubation time during isothermal annealing within its supercooled liquid temperature region. In addition, (Zr53Cu30Ni9Al8)99.75Si0.25 alloy was revealed to have the highest activation energy of crystallization, about 295 kJ/mole as determined by the Kissinger plot. All of the evidence implies that the microalloying of Si acts a positive effect on the GFA as well as the thermal stability for the Zr53Cu30Ni9Al8 based alloy. In addition, the compression fracture strength and plastic strain can be reached about 1900 MPa and 3 % for the 0.75 at%Si amorphous alloy. Fracture occurs along the maximum shear stress plane, which is inclined at 45° to the direction of compressive loading. The samples exhibited quite similar fracture pattern characterized by a well-developed vein-like structure, which is consistent with the observations in most metallic glasses. Meanwhile, clear shear bands can be observed on the side surfaces near the fracture area for the compressed samples. Additionally, the study of viscous-flow behavior for the 0.25 at%Si bulk amorphous alloy reveals that the values of effective viscosity about 108~1011 Pa.s can be obtained at supercooled liquid temperature region. This result is valuable and can be used for the application of precision forming on the bulk amorphous alloys in the future.
中文摘要……………………………………………………………....................Ⅰ
英文摘要……………………………………………………………………….…III
誌謝……………………………………………………………………………....IV
總目錄……………………………………………………………………..............V
表目錄…………………………………………………………………………. VIII
圖目錄……………………………………………………………………………IX
第一章 前言…………………………………………………………………...1
第二章 理論基礎……………………………………………………………….3
2-1 非晶質合金發展歷程…………………………………………………….3
2-2 實驗歸納法則…………………………………………………………….4
2-3 非晶質合金之製造方法………………………………………………….5
2-4 非晶質合金之種類…………………………………………………....….7
2-5 非晶質合金之熱力學性質………………………………………...…......8
2-5-1 非晶質之平衡……………………………………………………….8
2-5-2 玻璃轉換溫度Tg……………………………………………….……9
2-5-3 玻璃形成能力指標…………………………………………………11
2-5-3-1 簡化玻璃溫度Trg…………………………………………………11
2-5-3-2 γ值……………………………..……………..………..................11
2-5-3-3 γm值……………….………………………………………..…..12
2-5-4 熱力學分析…………………………………..………………….…...12
2-5-4-1 非恆溫分析-Kissinger plot………………………..………….13
2-5-4-2 修正之非恆溫分析法……………………………....................13
2-5-4-3 恆溫分析法……………………………….............………...…14

2-6 非晶質合金之特性……………………………………………………...15
2-6-1 機械性質……………………………………………………..…..…15
2-6-2 化學性質-耐蝕性………………………………………………......16
2-6-3 磁性質…………………………………………………………....…16
2-6-4 其他性質………………………………………………………....…17
第三章 實驗步驟………………………………………………………............18
3-1 材料製備………………………………………………………………...18
3-1-1 電弧熔煉…………………………………………………………....18
3-1-2 真空吸鑄製程…………………………………………..………..…19
3-2 熱性質分析……………………………………………………………...19
3-2-1 示差掃描熱分析(DSC)…………………………….……………....19
3-2-1-1 等速率升溫………………………..……….……………….20
3-2-1-2 恆溫加熱……………………….……………..…………….20
3-3 機械性質測試…………………………………………………….……..20
3-3-1 微硬度試驗……………………………….…………...………...….20
3-3-2 壓縮試驗……………………………….……………..……….……21
3-3-3 熱機械性質試驗…………………………………………………....21
3-4 真空熱處理…………………………………………………………...…21
3-5 微觀組織分析…………………………………………………………...22
3-5-1 X光繞射儀……………………………………………………..…..22
3-5-2 掃描式電子顯微鏡(SEM)觀察………………………………….....22
3-5-3 電子探測光顯微分析(EPMA)…………………………………..…22
3-5-4 穿透式電子顯微鏡(TEM)觀察…………………………………….23
第四章 結果與討論………………………………………………….…...........24
4-1 成分分析…………………………………………………….…………..24
4-1-1 電子探針顯微分析(EPMA)……………………………….……24
4-1-2 能量分散質譜儀(EDS)……………………………………………25
4-2 熱性質分析………………………………………………………….…..25
4-2-1 非恆溫熱熱力學分析……………………………..……....…...…...25
4-2-2 一般之非恆溫分析法-Kissinger plot…………..……...……….......26
4-2-3 修正之非恆溫分法…………………………..………..………...….27
4-2-4 恆溫熱力學與動力學分析……………..……………..………..…. 28
4-3 微觀結構分析………………………………………………………….. 30
4-3-1 X光繞射分析……………………….…………………..……….....30
4-4 TEM觀察分析………………………………………….…….………....31
4-4-1 TEM試片製作………………………………….……………….….31
4-4-2 TEM觀察及動力學分析………………………………………...... 31
4-5 機械性質分析…………………………………………………...……... 34
4-5-1 微硬度分析…………………………………….…….……….….....34
4-5-2 壓縮試驗分析………………………………….………...…...….…35
4-5-3 熱機械性質分析…………………………….….…………….….…35
4-6 SEM破斷面與表面分析……………………………….…………….…37
第五章 結論……………………………………………………………........... 38
參考文獻…………………………………………………………………........... 40
[1].吳學陞,工業材料,vol.149, 1999, p. 154.
[2].Z. P. Lu and C. T. Liu, Acta Mater., vol.50, 2002, p.3501.
[3].W. L. Johnson, Materials Science Forum, vol.225-227, 1996, p.35.
[4].A. Inoue, M. Koshiba, T.Zhang, and T. Masumoto, Appl. Phys., vol.83, 1998, pp.1967-1972.
[5].A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials, 2001.
[6].M. Naka, K. Hashimoto and T. Masumoto, J. Non-Cryst. Solids, vol.31, 1979, p.355.
[7].T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, Mater. Lett, vol.57, 2003, p.3022.
[8].B. M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, Corros. Sci., vol.37, 1995, p.709.
[9].H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, Mater. Sci. Eng., vol.318, 2001, p.77.
[10].C. A. C. Sousa and C. S. Kiminami, J. Non-Cryst. Solids, vol.219, 1997, p.155.
[11].W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, J. A. Horton, C. A. Carmichael Jr. and J. L. Wright, Intermetallics, vol.10, 2002, p.1157.
[12].A. Inoue, H. Koshiba, T. Zhang and A. Makino, J. Appl. Phys., vol.83, 1998, p.1967.
[13].Y. Hara, T. Ando, R.C. O’Handley and N. J. Grant, J. Appl. Phys., vol.62, 1987, p1948.
[14].A. Inoue, Mater. Sci. Eng., vol.226-228, 1997, p.357.
[15].A. Inoue and J. S. Gook, Mater. Trans., JIM, vol.36, 1995, p.1180.
[16].A. Inoue and J. S. Gook, Mater. Trans., JIM, vol.37, 1996, p.32.
[17].A. Inoue, T. Zhang, W. Zhang, and A. Takeuchi, Mater. Trans., JIM, vol.37, 1996, p.99.
[18].A. Inoue, T. Zhang and A. Takeuchi, Mater. Trans., JIM, vol.37, 1996, p.1731.
[19].A. Inoue and A. Makino, Nonostruct. Mater, vol.9, 1997, p.403.
[20].A. Inoue, M. Koshiba, T. Itoi and A. Makino, Appl. Phys. Lett., vol.73, 1998, p.744.
[21].A. Inoue, Mater. Sci. Eng., vol.304-306, 2001, p.1.
[22].V. Schroeder, C. Gilbert and R. Ritchie, Scripta Mater., vol.38, 1998, p.1481.
[23].T. H. Hung, J. C. Huang, J. S. C. Jang,and S. C. Lu, Mater. Tran. JIM, vol.48, 2007, pp.1-5.
[24].A. Leonhard, M. Heilmaier, J. Eckert and L. Schultz, NanoStructure Material, vol.10, 1998, pp.805-817.
[25].A. Inoue, Mater. Trans., JIM, vol.36, 1995, p.886.
[26].A. Inoue and C. Fan, Mat. Res. Soc. Symp. Proc., vol.554, 1999, p.143.
[27].A. Inoue, Intermetallics, vol.8, 2000, p.455.
[28].J. S. C. Jang, H. Y. Tsai, C.H. Tsau and C. J. Chen, The Minerals, Metals &Materials Society, 1992, p.95.
[29].J. S. C. Jang, I. H. Wang, L. J. Chang, T. H. Hung, J. C. Huang, Mater. Sci. and Eng., vol.449-451, 2007, pp.511-516
[30].W. Klement, R. H. Wilens and P. Duwez, Nature, vol.187, 1960, p.869.
[31].H. S. Chen and C.E. Miller, Rev. Sci. Instrum, vol.41, 1970, p.1237.
[32].A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans., JIM, vol.32, 1991, p.609.
[33].A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans., JIM, vol.33, 1992, p.937.
[34].A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum., vol.269-272, 1998, p.855.
[35].A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., vol.29, 1998, p.1779.
[36].A. Inoue, Buck Amorphous Alloys. Trans Tech Publications, Zurich, Swiss, 1998.
[37].R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, 1994.
[38].R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology vol.9, New York, USA, 1991.
[39].K. L. Chapra, Thin Film Phenomena, McGraw-Hill, 1969.
[40].W. Paul and R. J. Temkin, Adv. Phys., 1973, p.531.
[41].B. Li, N. Nordstrom and E. J. Lavernia, Mater. Sci. Eng., vol.237, 1997, p.207.
[42].R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng., vol.94, 2002, p.141.
[43].P. S. Grant, Prog. Mater. Sci., vol.39, 1995, p.497.
[44].C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, J. Non-Cryst. Solids, vol.284, 2001, p.134.
[45].A. Inoue, Acta Mater, vol.48, 2000, p.279.
[46].T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., vol.78, 2001, p.1213.
[47].A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., vol.49, 2001, p.2645.
[48].A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J. Mater. Res., vol.16, 2001, p.2836.
[49].T. D. Shen and R.B. Schwarz, J. Mater. Res., vol.14, 1999, p.2107.
[50].T. D. Shen and R.B. Schwarz, Appl. Phys. Lett., vol.75, 1999, p.49.
[51].B. S. Murty and K. Hono, Mater. Trans., JIM, vol.41, 2000, p.1538.
[52].H. E. Kissinger, Arial Chem., vol.29, 1957, p.1702.
[53].W. A. Johnson and K. F. Mehl, Trans. Am. Inst. Mining Met. Eng., vol.135, 1981, p.315.
[54].M. Avrami, J. Chem, Phys., vol.7, 1939, p.1103.
[55].M. Avrami, J. Chem, Phys., vol.8, 1940, p.212.
[56].M. Avrami, J. Chem, Phys., vol.9, 1941, p.177.
[57].鄭振東,非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990年。
[58].A. Inoue, Bluk Amouphous Alloys Practical Characteristics and ApplicationInstitute for Material Reserch, Tohoku University Katahira 2-1-1, Sendai 980-8577, Japan.
[59].J. S. Park, H. K. Lim, J. H. Kim, J. M. Park, D. H. Kim, Mat.sci., vol.40, 2005, pp.1937-1941.
[60].H. J. Guntherodt and H. Beck(ed), Glassy MetalsⅠ, Springer-Verlag, Berlin Heidelberg, Germany, 1981.
[61].A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater.Trans., JIM, vol.35, 1994, p.95.
[62].M. Heilmaier, Materials Processing Technology, vol.117, 2001, pp.374-380.
[63].S. R. Elliot, Physics of Amorphous Materials, USA, 1990.
[64].J. S. Park, H. K. Lim, J. H. Kim, J. M. Park, J.Mater.Sci., vol.40, 2005, pp.1937-1941.
[65].Richard Zallen, The Physics of Amorphous Solids, A Wiley-Interscience, Canada, 1983.
[66].F. T. Trouton, Proc.R.Soc. London., vol.77, 1906, p.1472
[67].A. Inoue, K. Hashimoto,etal., Amorphous and Nanocrystalline Materials Springer, pp.24-26.
[68].陳文照、曾春風、游信和,材料科學與工程導論,高立出版,Taipei,Taiwan,2002年,p.159。
[69].F. Spaepen and D. Tumbull, Scripta Met., vol.8, 1974, p.563
[70].P. S. Steif, F. Spaepen and T. W. Hutchinson, Acta metal., vol.30, 1982, p.447.
[71].P. G. Saffman and G. I. Taylor, Proc. R. Soc., vol.245, 1958, p.312
[72].F. Spaepen, Acta metal., vol.23, 1975, p.615.
[73].A. S. Argon and M. Salama, Mater. Sci. Eng., vol.23, 1976, p.219.
[74].E. Pitt and J. Greiller, J. Fluid Met., vol.11, 1961, p.33.
[75].W. W. Mullins and R. F. Sekerka, J. appl. Phys., vol.35, 1964, p.444.
[76].F. E. Luborsky and J. L. Walter, J. appl. Phys. , vol.47, 1976, p.3648.
[77].C. P. P. Chou and F. Spaepen, Acta metal., vol.23, 1975, p.609.
[78].W. N. Myung, S. P. Ryu, I. S. Hwang, H. G. Kim, T. Zhang, A. Inoue, A. L.Greer, Mater.Sci.Eng., vol.304-306, 2001, pp.691-695.
[79].K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., vol.19, 1984, p.291.
[80].C. C. Lin and P. Shen, J. Solid State Chem., vol.112, 1994, p.387.
[81].D. W. Henderson, J. Non-Cryst. Solids, vol.30, 1979, p.301.
[82].J. W. Christian,The Theory of Transformations in Metals and Alloy, 2002.
[83].H. Kato, A. lnoue, H. S. Chen.Acta materialia, vol.54, 2006, pp.891-898.
[84].T. Yamasaki, S. Maeda, Y. Yokoyama, D. Okai, T. Fukami, H. M. Kimura, A. Inoue, Intermetallics, vol.14, 2006, pp.1102-1106.
[85].X. H. Du, J.C.Huang, C.T.Liu, Z.P.Lu, J. Appl. Phys., vol.101, 2007.
[86].Z. P. Lu, X.Hu, Y. Li, and S. C. Ng, Mater. Sci. Eng., vol.679, 2001, pp.304-306
[87].W. Donald and H. A. Davies, J. Non-Cryst. Solids, vol.77, 1978, p.30.
[88].M. Marcus and T. Turnbull, Mater.Sci.Eng.,vol.211, 1976, p.23.
[89].A. Inoue, T. Zhang, and T. Masumoto, J. Non-Cryst. Solids, vol.473, 1993, pp.156-158.
[90].Y. Li, S. C. Ng, C. K. Ong, H. H. Hng,and T. T. Goh, Scr.Mater., vol.783, 1997, p.36.
[91].A. Inoue, Mater. Trans., JIM, vol.866, 1995, p.36.
[92].Z. P. Lu, C. T. Liu, H. Tan, and Y.Li (unpublished).
[93].J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang, C. T. Liu, Intermetallics., vol.14, 2006, pp.951-956.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊