跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾慶聰
研究生(外文):Ching-Tsung Tseng
論文名稱:添加稀土元素對鎂基非晶質的熱穩定性和玻璃形成能力之影響
論文名稱(外文):Glass forming ability and thermal properties of the Mg-based amorphous alloys with dual rare earth elements addition
指導教授:鄭憲清
指導教授(外文):Jason S. C. Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:148
中文關鍵詞:玻璃形成能力結晶溫度過冷液相區黏彈性
外文關鍵詞:crystallizationglass forming abilitysupercooled liquid regionviscosity
相關次數:
  • 被引用被引用:4
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗探討不同原子比例的Nd元素添加至Mg-Cu-Y合金基材中,對Mg- Cu-Y-Nd非晶質合金玻璃形成能力和熱性質的影響。在此藉由噴射鑄造法可製作出直徑為3mm~10mm的Mg58Cu31Y1-x Ndx非晶質合金棒材。而在XRD結果表示,這整組Mg58 Cu31Y1-xNdx合金棒材顯示有一非晶質相的寬廣繞射峰,且有一明顯的玻璃轉換溫度(glass transition temperature)和過冷液相區(super cooled region, △Tx about 70 K)。可發現當在Mg58Cu31Y11合金內之Nd元素添量增加時,結晶會從原本單一段變成兩階段的結晶,使得結晶溫度(crystallization temperature)和△Tx會隨著Nd含量的增加而有下降的趨勢。在這合金系統當中以Mg58Cu31Y6Nd5非晶質合金之γ和γm值為最高,分別為0.422和0.758。所以適當的Nd元素添加有助於Mg58Cu31 Y11-x Ndx合金系統的玻璃形成能力。此系統合金的結晶活化能,並不會隨著Nd添加量的增加而有明顯的改變,而Mg58Cu31Y10Nd1(127 kJ/mole)比Mg58Cu31Y6Nd5(125 kJ/ mole)合金之活化能為略高。在晶核飽和點方面,以Mg58Cu31Y10Nd1合金最高為43%,且其在恆溫443 K下的孕核時間為最久約4600秒,表示此成分擁有較佳的熱穩定性。
在機械性質方面,藉由MTS-801萬能試驗機在常溫下壓縮速率5×10-4 s-1下壓縮,Mg58Cu31Y1-x Ndx非晶質合金棒材之壓縮應力值為838 MPa~978 MPa、彈性限度為2 ~2.7%、比強度為254~210 MPa•cm3/g,而硬度值介於282~340 Hv。在熱機械分析(TMA)可知,Mg58Cu31Y6Nd5非晶質合金,在過冷液相區間內會有超塑性變形產生。且黏彈係數介於為106~107 Pa.s。而依據TMA分析結果,藉由MTS高溫壓縮,探討當在不同溫度時(接近Tonset 448 K、453 K、458 K),經不同壓縮速率條件下(2.5 x 10-3 ~ 1 x 10-2 s-1)其塑性變形行為。結果顯示為均勻塑性變形,使得應變速率敏感化指數(m)約為1。故在過冷液相區內,可發現Mg58 Cu31Y6 Nd5塊狀金屬玻璃,其優異的超塑性能力,且也知其有不錯的加工性。
由XRD和TEM微結構分析,Mg58Cu31Y6 Nd5合金在恆溫熱處理後所產生的結晶相是以Cu2Mg為主相。而在結晶初期會有Cu2Mg析出,之後隨退火時間增加陸續有Cu2Nd、Mg2Cu、CuY和Cu2Y結晶相產生。
The effect of Nd element addition on the glass forming ability and thermal stability for Mg-Cu-Y-Nd amorphous alloy system was deeply studied and discussed in this study. The Mg58Cu31Y11-xNdx (x=0 ~ 11) amorphous alloy rods with 3 ~ 10 mm in diameter were prepared by Cu-mold injection method. The XRD result reveals that these entire Mg58Cu31Y11-xNdx alloy rods exhibit a broaden diffraction pattern of amorphous phase. A clear Tg (glass transition temperature) and supercooled liquid region (about 70 K) were revealed for all of those Mg58Cu31Y11-xNdx amorphous alloy rods. The single stage crystallization of the Mg58Cu31Y11 alloy was found to change into two stages crystallization when large amount of Nd element was added into this alloy. In parallel, the crystallization temperature (Tx) and supercooled region (ΔTx) present a decreasing trend with increasing Nd content. The highest value of γ and γm are 0.422 and 0.758 which occurs at the alloy compositions of Mg58Cu31Y6Nd5 in this alloy system. Therefore, suitable addition of Nd element can obviously increase the glass forming ability for the Mg58Cu31 Y11-x Ndx alloy system. In addition, the highest transition point around 43% crystallization fraction of nucleation-crystal growth occurs and the longest incubation time(namely 4600 s) at isothermal temperature of 443 K was found to occur at the Mg58Cu31 Y10 Nd1 amorphous alloy.
Mechanical properties of the amorphous rods of Mg58Cu31Y1-xNdx alloy were investigated by means of compression test using an MTS-801 material testing system. The fracture strength, elastic elongation limit, and the specific strength of these Mg58Cu31 Y11-x Ndx alloy system are in the range of 838 MPa~978 MPa、2~2.7 % and 254~210 MPa•cm3/g respectively. Based on the thermal mechanical analysis the superplastic deformation with viscosity between 106~107 Pa.s. occurs at the temperature interval of the supercooled liquid region for the Mg58Cu31Y6Nd5 amorphous alloy. According to the result of TMA, the hot deformation behavior for Mg58Cu31Nd5 Y6 BMG rod was investigated by compression test with different strain rate (2.5 x 10-3 ~ 1 x 10-2 s-1) at various temperature near the Tonset (namely 438 K, 448 K, 453 K, and 458 K) in the supercooled liquid region. The results show a superior superplastic forming ability (which has the strain rate sensitivity coefficient (m-value) closed to 1.0) of the Mg58Cu31Nd5 Y6 amorphous alloy occurring within the supercooled liquid region.
After isothermal annealing Mg58Cu31Y6 Nd5 amorphous alloys at 448 K the principal phase of Cu2Mg crystallized firstly at the early stage of crystallization. Then, the Cu2Nd, Mg2Cu, CuY and Cu2Y crystal phase were gradually crystallizw with increasing the annealing time.
中文摘要…………………………………………………………….....................Ⅰ
英文摘要………………………………………………………………………….Ⅲ
誌謝……………………………………………………………………………….Ⅴ
總目錄…………………………………………………………………….............Ⅵ
表目錄…………………………………………………………………………….Ⅹ
圖目錄……………………………………………………………………………………………..…. VI
第一章 前言……………………………………………………………………..1
第二章 理論基礎………………………………………………………...….....3
2-1 非晶質金屬………………………………………………………........ 3
2-1-1序化與非序化…………………………………………………...…..…4
2-2 形成非晶質合金之法則…………………………………………….....5
2-2 塊狀金屬玻璃之發展……………………………………………….....8
2-4 非晶質合金的製造方式…….………………………………………..12
2-5 塊狀非晶質合金的特性……………………………………………...15
2-5-1 機械性質……………………………………………………..16
2-5-2 耐腐蝕性……………………………………...….……………20
2-5-3 磁性質……………………………………………..…………20
2-5-4 其他性質…………………………………………………..…22
2-6 非晶質合金的熱力學..………………………………………….....…22
2-6-1 非晶質合金是平衡的介穩態……………………....................22
2-6-2 玻璃轉換溫度( Tg )……………………………………………24
2-6-3 合金成份與玻璃形成能力的關係…………………………....26
2-6-4 原子相互作用程度與玻璃形成能力的關係………………....26
2-6-5 簡化玻璃溫度Trg…………………………..…………………29
2-6-6 γ值…………………………..…………………………….…29
2-6-7 △Tx………………………..……………………………........29
2-7 非晶質合金的熱穩定性………..………………………………….…..31
2-7-1非晶質合金的壽命..……………………………………….........31
2-7-2 非恆溫方式之活化能計算—Kissinger plot……………...........32
2-7-3 修正之非恆溫分析法…………………………………..............34
2-8 結晶動力學……………………………….……………………............35
2-8-1 恆溫結晶動力學( isothermal crystalline- JMA plot )….............35
2-8-2 結晶成長控制機制……………….…………………….............37
2-9 非晶質之發展近況與應用………….……………………......................39
2-10 Mg58Cu31Y11-xNdx合金元素特性與相圖……………............................40
第三章 實驗步驟…………………………….………………………...............45
3-1 實驗目的………………………….…………………………..................45
3-2 合金配製………………………….…………………………..................47
3-3 合金熔煉…………………….…………………………..........................48
3-3-1電弧熔煉………….…………………………................................48
3-3-2 塊狀非晶質合金棒材和板材之製作……....................................51
3-3-2-1高周波熔煉(induction - melting)…............................................52
3-3-2-2噴射鑄造(injection -casting) …..................................................53
3-4 熱性質分析………………….…………………………..........................48
3-4-1 示差掃描熱量計(DSC)………………...……..........................54
3-4-1-1 非恆溫升溫熱處理…………………...............................54
3-4-1-2 恆溫退火熱處理……………...........................................55
3-5密度量測……………….………………………………............................55
3-6 機械性質分析………….………………………………..........................56
3-6-1硬度量測……….………………………………............................56
3-6-2 熱機械性質分析(TMA)………………….…...............................56
3-6-3壓縮測試 (MTS testing)..…………………...................................56
3-7 微結構分析…………….………………………………..........................57
3-7-1 X光繞射儀相鑑定(XRD)…………………............................57
3-7-2 掃瞄式電子顯微鏡(SEM) ………………....................................58
3-7-3 穿透式電子顯微鏡(TEM) ……………........................................58
第四章 結果與討論
4-1 熱性質分析(DSC) ….………………………………………...................61
4-1-1 非恆溫熱性質分析………………………………........................61
4-1-2 結晶活化能(Kissinger plot) ……………………..........................65
4-1-3 非恆溫結晶動力學…………………………................................67
4-1-4恆溫結晶動力學…………………………….................................76
4-2 密度量測………….……………………………………..........................83
4-3 機械性質分析…….……………………………………..........................84
4-3-1 熱機械測試(TMA) …………../………………............................85
4-3-2 壓縮測試(MTS) ……...…………………….................................89
4-3-3-1常溫壓縮測試……………………..................................89
4-3-3-2不同溫度下熱壓測試.…………….................................91
4-4 微結構分析……….……………………………………........................100
4-4-1 掃描式電子顯微鏡(SEM)之破斷面觀察.......................100
4-4-2 X光繞射分析…………………………………………...100
4-4-2-1 鑄造後合金之XRD 分析…………………….107
4-4-2-2 Mg58Cu31Y6Nd5合金經恆溫退火熱處理後之
XRD分析…….………………...........................108
4-4-3 穿透式電子顯微鏡分析(TEM) ……………..................115
4-4-3-1 依XRD 和TEM 之結果對Mg58Cu31Y6Nd5 合
金於恆溫退火過程中結晶行為之推………….. 118
第五章 結論…….……………………………………........................................137
參考文獻…………….……………………………..............................................140
[1].葉哲政著,鎂合金在車輛產業之應用專題研究,經濟部技術處發行,2003年,pp.11-13。
[2].游雅娟等編,鎂合金產業通訊,台灣鎂合金協會出版,第29期,2005年。
[3].吳學陞著作,新興材料-塊狀非晶質金屬材料,工業材料,第149期,1999年,pp.154-159。
[4].W. Klement, R. H. Wilens and P. Duwes, “ Thermophysical properties of bulk metallic glass-forming liquids”, Nature, vol.187, 1960, p.869.
[5].A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mater. Trans. JIM.”, vol.32, 1991, p.609.
[6].A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans.JIM, vol.33, 1992, pp.937-942.
[7].A. Inoue, T. Zhang and T. Masumto “ Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region”, Mater. trans. JIM, vol.31, 1990, pp.177-183.
[8].A. Gebert, R.V. Subba Rao, U. Wolff, S. Baunack, J. Eckert , L. Schultz, “Corrosion behavior of the Mg65Y10Cu15Ag10 bulk metallic glass”.
[9].Y.K. Xu, J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol.49, 2003, pp.843-848.
[10].H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma, J. Mater. Res. 2005; 20:2252.
[11].H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, J. Mater. Res. 2006; 21, in press.
[12].H. Men and D.H. Kim, “Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere”, J. Mater. Res., vol.18, no.7, July 2003, pp.1502-1504.
[13].Guangyin Yuan, Akihisa Inoue, “The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys”, Journal of Alloys and Compounds, vol.387, 2005, pp.134-138.
[14].A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mater. Trans. , 1992;33: 937.
[15].Qiang Zheng,a Han Ma,a En Mab and Jian Xua, Scripta Materialia , vol.55, 2006, pp.541-544
[16].戴道生、韓汝琪等編著,非晶態物理,高等學校教學用書,電子業出版社,1984年。
[17].Brenner, A, Couch, D. E. and Williams, E. K, J. Res, natn. Bur. Stand, vol.44, 1950, p.109.
[18].陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠等著,材料電子顯微鏡學,國科會精儀中心,1990年,p.268。
[19].鄭振東編譯,非晶質金屬漫談,建宏出版社,1990年,p.39。
[20].R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, 1994.
[21].A. Inoue, “Stabilization of Metallics Super Cooled Liquid and Bulk Amorphous Alloys”, Acta Mater., vol.48, 2000, pp.279-306.
[22].A. Brenner, D. E. Couch and E. K. Williams, “ Electrodeposition of alloys”, J. Res, natn. Bur. Stand, vol.44, 1950, p.109.
[23].D. Turnbull, “ Phase Changes”, Solid State Phys., vol.3, 1956, pp.225-306.
[24].D. Turnbull, “ Amorphous Solid Formation and Interstitial Solution Behaviour in Metallic Alloy Systems”, J. Phys., vol.35, 1974, pp.1-10.
[25].H. S. Chen:Glass metals. Rep. Prog. Phys., vol.43, 1980, pp.353-356.
[26].A.L. Drehman, A.L. Greer, D. Turnbull, Appl. Phys. Lett., vol.41, 1982, p.716.
[27].A. Inoue, Mater. Trans. JIM, vol.36, 1995, p.866.
[28].W.H. Wang et al. / Materials Science and Engineering R.vol.44, 2004, pp.45-89.
[29].A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials, Springer, 1995, p.7.
[30].A. Inoue, “ Stabilization of Metallics Supercooled Liquid and Bulk Amorphous Alloys”, Acta Mat., vol.48, 2000, pp.279-306.
[31].A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mater. Trans.JIM.”, vol.32, 1991, p.304.
[32].X. M. Wang, I. Yoshii, A. Inoue, Y-H. Kim and I-B. Kim, “ Bulk Amorphous Ni75-xNb5MxP20-yBy(M=Cr, Mo) Alloys with Large Supercooling and High Strength”, Mater. Trans., JIM, vol.40, 1999, pp.1130-1136.
[33].A. Peker, W.L. Johnson, Appl. Phys. Lett. vol. 63, 1993, p.2342.
[34].S.J. Poon, G.J. Shiflet, V. Ponnambalam, V.M. Keppens, R. Taylor,
G. Petculescu, Mater. Res. Soc. Symp. Proc., vol. 754, 2003, p.121.
[35].W.L. Johnson, MRS Bull. vol.24, 1999, p.42.
[36].K. L. Chapra, Thin Film Phenomena, Mc Graw-Hill, New York, 1969.
[37].L. I. Naissel and R. Glanz, Handbook of Thin Film Technology, McGraw-Hill, New York, 1970.
[38].G. N. Jackson, Thin Solid Films, Champman and Hall, 1970, p.209.
[39].L. Holland, Vacuum Deposition of Thin Films, John Wiley and Sons Inc. New York, 1958.
[40].Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater., vol. 47,1999, p.579.
[41].Z. P. Xing, S. B. Kang and H. W. Kim, Metall. Mater. Trans., vol.33, 2002, p.1521.
[42].C. C. Koch, O. B. Kavin, C. G. Mckamey and J. O. Scarbrough, Appl. Phys. Lett., vol.43, 1983, p.1017.
[43].J. Lee, F. Zhou, K. H. Chung, N. J. Kim and E. J. Lavernia, Metall. Mater. Trans., vol.32, 2001, p. 3109.
[44].M. S. El-Eskandarany and A. Inoue, Metall. Mater. Trans., vol.33, 2002, p.135.
[45].A. Sagel, H. Sieber, H.-J. Fecht and J. H. Perepezko, Acta Mater., vol. 46, 1998, p. 4233.
[46].A. Inoue, Mater. Sci. Eng., vol.30, 2001, pp.304-306.
[47].A. Inoue, Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research, Tohoku University Katahira 2-1-1, Sendai no. p.980.
[48].D. G. Pan, H. F. Zhang, A. M. Wang, and Z. Q. Hu, PHYSICS LETTERS vol.89, 2006, p.261.
[49].A. Inoue, Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research, Tohoku University, Sendai, Japan, 1999.
[50].H.-J. Guntherodt and H. Beck(ed), Glassy MetalsⅠ, Springer-Verlag, Berlin Heidelberg, Germany, 1981.
[51].A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, vol.35, 1994, p.95.
[52].A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, vol. 35, 1994, pp.95.
[53].S. R. Elliot, “Physics of Amorphous Materials”, 1990, p.30.
[54].H. S. Chen:Glass metals. Rep. Prog. Phys., vol.43, 1980, pp.353-356.
[55].H. S. Chen, etal., J. Appl. Phys. Letter, vol.10, 1967, pp.188-284.
[56].M. H. Cohen, etal., “Metastability of Amorphous Structure”, Nature, vol.203, 1964, p.964.
[57].D. Wear, “ Electronic Structure Methods With Applications To Amorphous”, Phys. Rev. B, vol.4, 1971, p.2508.
[58].W. Kauzmann, “ The nature of the glassy state and the behavior of liquids at low temperatures”, Chem. Rev., vol.43, 1948, pp.219-256.
[59].D. Turnbull, Physics of Non-Crystalline Solides, By J. A. prins, North-Holland, 1964, pp.41-56.
[60].R. J. Greet and D. Turnbull, “ Test of Adam-Gibbs Liquid Viscosity Model with O-Terphenyl Specific-Heat Data”, J. Chem. Phys., vol.47, 1967, pp.2185-2189.
[61].J. H. Gibbs and E.A. Di Marzio, “ Nature of the Glass Transition and Glass State”, J. Chem. Phys., vol.28, 1958, pp.373-375.
[62].M. Hansen and K. Anderko, Constitution of Binary Alloys, McGrew-Hill, New York, 1958, p.206.
[63].M. H. Cohen and D. Turnbull, “Molecular Transport in Liquids and Glasses”, J. Chem.Phys., vol.31, 1959, pp.1164-1168.
[64].H. S. Chen, “ Thermodynamic Considerations on the Formation and Stability of Metallic Glasses”, Acta. Met., vol.22, 1974, pp.1505-1511.
[65].H. S. Chen and D. Turnbull, “ The glass Transition Temperature in Glassy Alloys: Effects of Atomic Sizes and the Heats of Mixing”, Acta Met., vol.22, 1974, pp.897-903.
[66].J. Hafner, “ Structure and Thermodynamic of Liquid Metal and Alloys”, Phys. Rev., vol.16, 1977, pp.351-356.
[67].J. Dixmier, K. Doi and A. Guinier, Physics of Non-Crystalline Solids, By J.A. Prins, North-Holland, 1965, pp.67-75.
[68].B. C. Giessen and C. N. J. Wagner, Physics and Chemistry of Liquid Metals, By S. Z. Beer, Marcel Dekker, 1972, p.633.
[69].H. S. Chen and D. Turnbull, “ Formation and stability of amorphous alloys of Au-Ge-Si”, Acta Met., vol.18, 1970, pp.261-263.
[70].Z. P. Lu and C. T. Liu, “ A new glass-forming ability criterion for bulk metallic glasses”, Acta Mat., vol.50, 2002, pp.3501-3512.
[71].X.H. Du, .C. Haung, .T. Liu, Z.P. Liu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of applied physic, vol.101, 2007, pp.88-108
[72].X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, “On the criteria of bulk metallic glass formation in MgCu-based alloys”, Intermetallics, vol.13, 2005, pp.638-641.
[73].S. Takayama, “ Review Amorphous Structure and Their Formation and Stability”, J. Mat. Sci., vol.11, 1976, pp.164-166.
[74].S. Daves, Rapidly Quenched Metals Ⅲ, The Metals Soc., 1978, p.425.
[75].H. E. Kissinger, “ Reaction Kinectics in Differential Thermal Analysis”, Anal. Chem, vol.29, 1957, pp. 1702-1706.
[76].J. Vazquez, R. A. Ligero, P. Villares and R. Jimenez-Garay, Thermochim. Acta, vol.157, 1990, p.181.
[77].J. Vazquez, R. L. Lopez-Alemany, P. Villares and R. Jimenez-Garay, J. Phys. Chem. Solids, vol.61, 2000, p.493.
[78].Chung-Cherng Lin and Pouyan Shen, J. Solid State Chem., vol.112, 1994, p.387.
[79].K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., vol. 19, 1984, p.291.
[80].M. Avrami, “ Kinetics of Phase Change”, J. Chem. Phys., vol.7, 1939, p.1103.
[81].S. Nojima, H. Tsutsut, M. Urushirsura, W. Kosaka, N. Kato and T. Ashida, “A Dynamic Study of Crystallization of Poly (ε-caprola-ctone) and Poly(ε-caprolactone)/Poly(vinyl chloride) Blend”, Polymer Journal, vol.18, no.6, 1986, pp.451-461.
[82].D. V. Louzguine and A. Inoue, “ Crystallization Behavior of Ti50Ni25Cu25 Amorphous Alloy”, J. Mat. Sci., vol.35, 2000, pp.4164-4195.
[83].Dunlop Catalog, Tokyo, 1998.
[84].http://www.webelements.com/
[85].S. Delfino, A. Saccone, R. Ferro, Met.Trans., vol.21, 1990, p.2109.
[86].A.P. Bayanov, Russ. J. Phys. Chem., vol.43, 1969, p.1250.
[87].Cohesion in metals transition metal alloys, pp.344-354.
[88].Akihisa Inoue, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan, Acta mater., vol.48, 2000, pp.279-306.
[89].F. Spaepen and D. Tumbull, Scripta Met., vol.8, p.563, 1974.
[90].P. S. Steif, F. Spaepen and T. W. Hutchinson, Acta metal., vol.30, p.447, 1982.
[91].P. G. Saffman and G. I. Taylor, Proc. R. Soc., vol.245, p.312, 1958.
[92].F. Spaepen, Acta metal., vol.23, p.615, 1975.
[93].A. S. Argon and M. Salama, Mater. Sci. Eng., vol.23, p.219, 1976.
[94].E. Pitt and J. Greiller, J. Fluid Met., vol.11, p.33, 1961.
[95].W. W. Mullins and R. F. Sekerka, J. appl. Phys., vol.35, p.444, 1964.
[96].F. E. Luborsky and J. L. Walter, J. appl. Phys., vol.47, p.3648, 1976.
[97].C. P. P. Chou and F. Spaepen, Acta metal., vol.23, p.609, 1975.
[98].Inoue, A. and Saotome, Y., Metals, vol.3, 1993, p. 51.
[99].Kato, H., Chen, H.S. and Inoue, A., to be submitted.
[100].Y.A. Chang, et al., Milwaukee, Wis.Materials Dept., University of Wisconsin-Milwaukee, c1979“ Phase diagrams and thermodynamic properties of ternary copper-metal systems”.
[101].Paul de Hey,Jilt Sietsma, A. van den Beuke, Materials Science and Engineering , vol.226-228, 1997, pp.336-340.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top