跳到主要內容

臺灣博碩士論文加值系統

(3.215.79.68) 您好!臺灣時間:2022/07/04 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耀允
研究生(外文):Yao-yun Chang
論文名稱:GNSS單一時刻即時動態週波未定值解算:使用LAMBDA和CAR兩種方法
論文名稱(外文):GNSS Single Epoch Real-Time Kinematic Ambiguity Resolution : Using LAMBDA and CAR Methods
指導教授:楊名楊名引用關係
指導教授(外文):Ming Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:64
中文關鍵詞:加利略單一時刻週波未定值解算全球導航衛星系統
外文關鍵詞:GalileoSingle-epoch Ambiguity ResolutionGNSS
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1301
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
載波相位觀測量在高精度的GPS動態定位扮演一個重要的角色。當決定了正確的整數週波值,單一時刻確實可達到公分等級的定位精度。本研究將聯合GPS及Galileo的三頻觀測量,利用LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) 與CAR (Cascading Ambiguity Resolution) 兩種解算週波值的方法,分析GNSS單一時刻二次差分週波未定值解算效益。模擬24小時的觀測量,以進行短基線單一時刻週波值的解算。利用正確的週波值與估計的Ratio值作為成功解算週波值的依據,分析不同觀測條件下週波值的解算成果。研究成果顯示,當衛星遮蔽角達到30度且載波觀測量的精度為1公分時,LAMBDA法解算整數週波值完全正確的筆數可達99%以上,同時,通過Ratio值測試的筆數也有90%以上。而CAR法解算整數週波值受到觀測量精度與線性組合的影響,使得正確整數週波值的筆數銳減。因此未來GNSS單一時刻即時動態定位,使用LAMBDA法解算週波值將較CAR法更具測量應用上之優勢。
Carrier phase measurements play an important role on high precision GPS kinematic positioning. Once the integer ambiguities are determined correctly, it can be surely achieved centimeter-level positioning accuracy in one epoch. This study investigates GNSS single epoch double difference ambiguity resolution performance for combined GPS with Galileo triple-frequency measurements using both LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) and CAR (Cascading Ambiguity Resolution) methods. Short baseline single epoch ambiguity resolution based on 24-h simulated data is taken into study. Ambiguity resolution has been successfully carried out using correct ambiguity and estimated Ratio value for the study result under different observation condition.The results show that the correct rate of epochs for resolving all triple-frequency ambiguities can be achieved up 99% by using LAMBDA method. It will come true when the mask angle is 30 degree and the precision of carrier phase is 1 cm. Meanwhile, the successful rate of epochs pass the Ratio test can be also achieved up 90%. However, the CAR method, influenced by measurement precision and linear combination, makes reduction in the correct epochs. Therefore, it trends towards that the LAMBDA method is superior to CAR method on future GNSS single-epoch real-time kinematic ambiguity resolution.
摘 要 I
Abstract II
誌 謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
§ 1-1 前言 1
§ 1-2 研究背景與文獻回顧 2
§ 1-2-1 現代化GPS及GLONASS 2
§ 1-2-2 歐盟Galileo計畫 4
§ 1-2-3 文獻回顧 8
§ 1-3 研究動機與目的 10
§ 1-4 研究方法 11
第二章 全球導航衛星系統定位原理 13
§ 2-1 觀測量模式 13
§ 2-1-1 虛擬距離觀測量 13
§ 2-1-2 載波相位觀測量 14
§ 2-1-3 誤差來源 15
§ 2-1-3-1 軌道誤差 16
§ 2-1-3-2 時錶誤差 16
§ 2-1-3-3 大氣延遲誤差 16
§ 2-1-3-4 相位中心偏差與多路徑效應 17
§ 2-1-3-5 系統時間與坐標系統偏差 17
§ 2-2 雙系統定位方法 18
§ 2-2-1 單點定位 19
§ 2-2-2 相對定位 20
§ 2-2-2-1 一次差分 (Single Difference) 20
§ 2-2-2-2 二次差分 (Double Difference) 22
§ 2-3 載波觀測量線性組合 23
§ 2-3-1 二次差分線性組合 24
§ 2-3-2 誤差分析 25
第三章 整數週波未定值解算方法 27
§ 3-1 LAMBDA搜尋法 27
§ 3-2 CAR 演算法 30
第四章 模擬數據及單一時刻週波未定值解算法 34
§ 4-1 三頻觀測量之數值模擬 34
§ 4-1-1 原理及流程 34
§ 4-1-2 誤差模式 36
§ 4-2 週波值解算方法與流程 36
§ 4-2-1 幾何模式LAMBDA估計週波值 37
§ 4-2-2 週波值實數解精度分析 40
§ 4-3 統計分析 41
§ 4-3-1 比率測試 41
§ 4-3-2 正確率及成功率 42
第五章 實驗與成果分析 43
§ 5-1 實驗方法與流程 43
§ 5-2 實驗資料 44
§ 5-3 真實資料與模擬資料比較分析 46
§ 5-4 單一時刻週波值解算成果 49
§ 5-4-1 實驗一 49
§ 5-4-2 實驗二 52
§ 5-4-3 實驗三 55
第六章 結論與建議 56
參考文獻 58
附錄:RINEX 3.0觀測檔範例 63
1.楊名,江凱偉,2007,全球導航衛星系統(GNSS)資料聯合處理技術,內政部土地測量局委託計劃期末報告,國立成功大學衛星資訊研究中心,台南。
2.伍岳,2005,第二代導航衛星系統多頻資料處理理論及應用,武漢大學博士論文。
3.黃文祺,2001,以低相關化技巧求解週波未定值時超橢球方位變化之探討,國立台灣大學土木工程學碩士論文,台北。
4.Alves, P., 2001, The Effect of Galileo on Carrier Phase Ambiguity Resolution. Proc. of ION GPS-01, The University of Calgary, CA.
5.Blomenhofer, H., W. Ehret, E. Blomenhofer, 2003, Performance Analysis of GNSS Global and Regional Integrity Concepts, Proceedings of ION GPS/GNSS 2003, Portland, Oregon, pp. 991-1001.
6.Bossche, M., C. Bourga, and B. Lobert, 2004, GPS Galileo Time Offset : How it Affects Positioning Accuracy and How to Cope with It, Proc. of ION GNSS-04, 21-24 September, Long Beach, CA, pp. 654-659.
7.de Jonge, P.J., and C.C.J.M. Tiberius, 1996, The LAMBDA Method for Integer Ambiguity Estimation : Implementation Aspects, Delft Geodetic Computing Centre LGR Series, No. 12, Delft University of Technology, The Netherlands.
8.European Commission, 2003, The Galilei Project, Galileo Design Consolidation, http://europa.eu.int/comm/dgs/energy_transport/galileo/doc/galilei_brochure.pdf
9.Federal Space Agency for the Russian Federation, GLONASS : Status and Perspectives. Munich Satellite Navigation Summit 2005. Munich, 9 March, 2005.
10.Feng, Y., 2003, Combined Galileo and GPS : A Technical Perspective. Journal of Global Positioning Systems, Vol. 2, No. 1, pp. 67-72.
11.Feng, Y., and C. Rizos, 2005, Three Carrier Approaches for Future Global, Regional and Local GNSS Positioning Services : Concepts and Performance Perspectives, The proceedings of ION GNSS 2005, pp. 2277-2287.
12.Feng, Y., C. Rizos, and M. Moody, 2006, Exploring Performance Benefits from Multiple Satellite Systems and Multiple Carrier Signals Using GPS and Virtual Galileo Measurements. IGNSS Symposium 2006, Holiday Inn Surfers Paradise, Australia.
13.Forsell, B., M. Martin-Neira, and R. Harris, 1997, Carrier phase ambiguity resolution in GNSS-2. In Proc. ION GPS-97, pp. 1727-1736.
14.Han, S., and C. Rizos, 1999, The Impact of Two Additional Civilian GPS Frequencies on Ambiguity Resolution Strategies, 55th National Meeting U.S. Institute of Navigation, “Navigational Technology for the 21st Century”, Cambridge, Massachusetts, 28-30 June, pp. 315-321.
15.Hatch, R., J. Jung, P. Enge, and B. Pervan, 2000, Civilian GPS : The benefit of three frequencies. GPS Solutions, Vol. 3, No. 4, pp. 1-9.
16.Hein, G.W., J. I. Godet, M. Jean-Luc, E. Jean-Christophe, L. Philippe, Rafael, and T. Pratt, 2002, Status of Galileo frequency & signal design, Proceedings of the US Institute of Navigation (ION) GPS’2002 meeting, September 24-27, Oregon Convention Center, Portland, Oregon, USA (CD).
17.Ji, S., W. Chen, C. Zhao, X. Ding, and Y. Chen, 2007, Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods. GPS Solutions, The Hong Kong Polytechnic University, Hong Kong, China.
18.Jung, J., P. Enge, and B. Pervan, 2000, Optimization of cascade integer resolution with three civil GPS frequencies. In Proc. ION GPS-00, Salt Lake City, UT, USA. pp. 2191-2200.
19.Kaplan, E., and C. Hegarty, 2005, Understanding GPS : Principles and Applications. 2nd ed., Artech House, Boston.
20.Kim, D., and R. B. Langley, 2000, GPS Ambiguity Resolution and Validation : Methodologies, Trends and Issues. Presented at the 7th GNSS Workshop – International Symposium on GPS/GNSS, Seoul, Korea, Nov. 30-Dec. 2, 2000. University of New Brunswick, CA.
21.Koch, K. R., 1999, Parameter Estimation and Hypothesis Testing in Linear Models, 2nd ed., Spring-Verlag, Germany.
22.Landau, H., U. Vollath, X. Chen and T. Allison, 2004, Benefits of Modernized GPS/Galileo to RTK Positioning, The 2004 International Symposium on GNSS/GPS, Sydney, Australia.
23.Leick, A., 1995, GPS Satellite Surveying, 2nd ed., John Wiley & Sons, INC, New York, USA.
24.Milbert, D., 2005, Influence of Pseudorange Accuracy on Phase Ambiguity Resolution in Various GPS Modernization Scenarios, 2005, Navigation, Spring 2005, Vol. 52, No. 1, pp. 29-38.
25.Miller, J., 2004, GPS & GALILEO : Evolution towards GNSS, Presentation at ION NTM-04, 26-28 January, San Diego, CA, pp. 73-91.
26.Radovanovic, R.S., G. Fotopoulos, and N. El-Sheimy, 2001, On Optimizing GNSS Multi-Frequency Carrier Phase Combinations for Precise Positioning. Presentation at IAG 2001 Scientific Assembly, Budapest, Hungary.
27.Schmitz, M., and G. Wübbena, 2004, Precise Kinematic GPS Processing and Rigorous Modeling of GPS in a Block Adjustment, Presentation at BINGO Seminar, BAE Systems, 20th April 2004, Frankfurt am Main, Germany.
28.Seeber, G., 1993, Satellite Geodesy, 2nd ed., Walter de Gruyter, Berlin, New York, USA.
29.Seynat, C., A. Kealy, and K.Zhang, 2004, A Performance Analysis of Future Global Navigation Satellite Systems, The 2004 International Symposium on GNSS/GPS, Sydney, Australia.
30.Teunissen, P. J. G., 1995, The Least-square Ambiguity Decorrelation Adjustment : A method for fast GPS integer ambiguity estimation, Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82.
31.Teunissen, P. J. G., P. Joosten, and C. Tiberius, 2002, A Comparison of TCAR, CIR, and LAMBDA GNSS Ambiguity Resolution. ION GPS-02, Delft University of Technology, The Netherlands. pp. 2799-2808.
32.Tiberius, C., T. Pany, B. Eissfeller, P. Joosten, and S. Verhagen, 2002, 0.99999999 confidence ambiguity resolution with GPS and Galileo, GPS Solutions, Vol. 6, pp. 96-99.
33.Verhagen, S., 2004, Integer ambiguity validation: an open problem ?, GPS Solutions, Vol. 8, pp. 36-43.
34.Vollath, U., S. Birnbach, and H. Landau, 1999, Analysis of Three-Carrier Ambiguity Resolution Technique Precise Relative Positioning in GNSS-2, Journal of The Institute of Navigation, Vol. 46, No. 1, pp.13-23.
35.Vollath, U., 2004, The Factorized Multi-Carrier Ambiguity Resolution (FAMCAR) Approach for Efficient Carrier-Phase Ambiguity Estimation, In Proc. ION GNSS-04, Long Beach, CA, pp. 2499-2508.
36.Wang, J., H. K. Lee, S. Hewitson, C. Rizos, and J. Barnes, 2003, Sensitivity Analysis for GNSS Integer Carrier Phase Ambiguity Validation Test. The University of New South Wales, Australia.
37.Wang, Z., J. Liu, K. Zhang, 2004, Multiple Carrier Ambiguity Resolution Method For Galileo. The 2004 International Symposium on GNSS/GPS, Sydney, Australia, 6–8 December 2004.
38.Wang, Z., Y. Wu, K. Zhang, 2004, Triple-Frequency Method for High-Order Ionospheric Refractive Error Modelling in GPS Modernization, The 2004 International Symposium on GNSS/GPS, Sydney, Australia.
39.Wells, D., N. Beck, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. M. Tranquilla, and P. Vanicek, 1986, Guide to GPS Positioning, Canadian GPS Assoc., Fredericton.
40.Wu, F., N. Kubo, and A.Yasuda, 2003, A Study of Hybrid Modernized GPS and Galileo Positioning in Japan. The Journal of Japan Institute of Navigation, September , Vol. 109.
41.Zhang, W., 2005, Triple Frequency Cascading Ambiguity Resolution for Modernized GPS and GALILEO, PhD thesis, Department of Geomatics Engineering, University of Calgary, CA.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top