跳到主要內容

臺灣博碩士論文加值系統

(18.208.186.139) 您好!臺灣時間:2022/05/29 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝岳峰
研究生(外文):Yueh-Feng Hsieh
論文名稱:以幾丁聚醣培養樟芝菌絲體生產葡萄糖胺與抗氧化之研究
論文名稱(外文):Production of Glucosamine by Mycelium of Taiwanofungus Camphorates with Chitosan and Evaluation of Antioxidative Activity.
指導教授:李柏旻
指導教授(外文):Pomin Li
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物機電工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:樟芝幾丁聚醣樟屬植物葡萄糖胺胞外多醣抗氧化能力
外文關鍵詞:Taiwanofungus camphorateschitosancinnamomum plantsglucosamineexopolysaccharidesantioxidant activity.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1739
  • 評分評分:
  • 下載下載:145
  • 收藏至我的研究室書目清單書目收藏:2
樟芝(Taiwanofungus camphorates)為台灣特有的藥用菇類,活性產物對於人體有提升免疫力與保肝等功能。由於樟芝於野地生長緩慢且取之不易,因此近年來使用固態與液態培養,以品質較穩定且價格合理的方式,供應保健食品市場來符合大眾的需求。本實驗探討以幾丁聚醣與樟屬植物之抽出物添加於固、液態培養基中,對於樟芝菌絲體(mycelia)、葡萄糖胺(glucosamine)與多醣體(polysaccharides)的生產及品質之影響。
試驗結果顯示,以不同濃度的幾丁聚醣為碳源,添加於幾丁聚醣培養基中,與MEA培養基比較。幾丁聚醣培養基之生長速度較緩慢,但菌絲出現明顯的鮮紅色,整體菌絲的生長型態以內部緊實及外緣鬆散方式呈現。於搖瓶培養方面,添加不同去乙醯度的幾丁聚醣(40%、50%、60%)與樟屬抽出物可得到最多葡萄糖胺,分別為25 mg/ml之40%幾丁聚醣(2.25 mM)、15 mg/ml之60%幾丁聚醣(2.24 mM)與牛樟之甲醇抽出物(2.26 mM);胞外多醣(EPS)分別為50 mg/ml之40%幾丁聚醣(0.212 g)、25 mg/ml之60%幾丁聚醣(0.218 g)與土肉桂之乙酸乙酯抽出物(0.154 g)。隨著添加物濃度增加,胞外多醣的含量也隨之增加。
在抗氧化試驗中,以添加15 mg/ml之40%幾丁聚醣(88.37%)、牛樟之乙酸乙酯抽出物(84.66%)與未添加的培養基皆有較佳的抗氧化力。於捕捉DPPH自由基能力以15 mg/ml之60%幾丁聚醣(78.95%)、牛樟之甲醇抽出物(86.54%)與樟樹之甲醇抽出物(85.97%),其次是未添加幾丁聚醣的菌絲。甲醇萃取濃度在2.5 mg/ml~10 mg/ml時,添加30 mg/ml之40%幾丁聚醣(86.31%)、牛樟之正己烷抽出物(80.19%)與土肉桂之甲醇抽出物(78.19%)表現出較高的螯合亞鐵離子能力。
研究結果顯示,高濃度的幾丁聚醣與樟屬抽出物不僅保有菌絲原本之抗氧化性質,而且能提升其部份抗氧化能力、葡萄糖胺與胞外多醣達到較高的程度。
Taiwanofungus camphorates is an important Chinese medicinal mushroom, and is an unique species only grown in Taiwan. It has many functional properties in human body, especially for promoting immune system and protecting liver. As growing slowly in the wild, supply of T. camphorates with stable product quality at reasonable price is in high demand. Research is interest in attempting to utilize chitosan and Cinnamomum plants extract as substrate for production of this organism, on the productivity and quality of the microbial mycelia, glucosamine and polysaccharides.
Result of the study, as the carbon source with chitosans of different deacetylation degrees, add it in chitosans medium, compare with MEA medium. The mycelium growth rate of chitosans medium is relatively slow in speed, but the brilliant red that the mycelium is obvious, the growth type of the whole mycelium is closely knit with the internal and the loose of rim ppear. Addition of chitosans of different deacetylation degrees (40%, 50%, 60%) and Cinnamomum plants extract can get high content glucosamine in flask cultured, it is 25 mg/ml of 40% chitosans (2.25 mM), 15 mg/ml of 60% chitosans (2.24 mM) and methanol extract of C. kanehirae (2.26 mM), respectively. Part of exopolysaccharides, it is 50 mg/ml of 40% chitosans (0.212 g), 25 mg/ml of 60% chitosans (0.218 g) and ethyl acetate extracts of C. osmophloeum (0.154 g), respectively. As the concentration of additive increases, the content of exopolysaccharides with increase in flask cultured.
In the study of antioxidant activity, in order to addition 15 mg/ml of 40% chitosan (88.37%), ethyl acetate extracts of C. kanehirae (84.66%) and without additive, all has good antioxidant activity in flask cultured. In the study of 1,1-diphenyl-2-picrylhydrazyl radicals. With 15 mg/ml of 60% chitosan (78.95%), methanol extract of C. kanehirae (86.54%) and methanol extract of C. camphora (85.97%), the secondary were mycelium of without chitosan. The mycelium cultured with 40% chitosan of 30 mg/ml (86.31%), n-Hexane extract of C. kanehirae (80.19%) and methanol extract of C. osmophloeum (78.19%) at methanol extract (2.5 mg/ml–10 mg/ml) showed a high chelating effects on ferrous ions.
Summarily, high concentration of chitosan and Cinnamomum plants extract could not only maintain the antioxidant properties of mycelia, but also enhanced some of it is antioxidant properties and higher production of glucosamine and exopolysaccharides.
摘 要 I
ABSTRACT III
誌 謝 V
目 錄 VII
表目錄 X
圖目錄 XI
第1章 緒論 1
1.1 前言 1
1.2 研究背景與動機 1
1.3 研究目的 3
第2章 文獻探討 4
2.1 一般食用藥菇之介紹與生理活性 4
2.2 樟芝之簡介 7
2.2.1 樟芝菌種發展史及型態特徵 7
2.2.2 樟芝成分分析 9
2.3 樟芝的藥理特性與功用 10
2.3.1 葡萄糖胺(Glucosamine)之介紹 10
2.3.2 樟芝多醣(Polysaccharides)之介紹 11
2.3.3 樟芝抗氧化(Antioxidants)性質分析 13
2.4 食用藥菇液態培養之特性 14
2.4.1 培養基組成 15
2.4.2 攪拌速率與剪切力 17
2.4.3 溫度 18
2.4.4 pH值 18
2.4.5 黏度 19
2.4.6 溶氧值(DO值) 19
2.5 幾丁質與幾丁聚醣之介紹 19
2.5.1幾丁質 19
2.5.2幾丁聚醣 22
2.6 添加抽出物對真菌生長型態之作用 24
第3章 材料與方法 25
3.1 試驗流程圖 25
3.1.1 菌絲體培養流程 25
3.1.2 幾丁聚醣備製之流程 26
3.1.3 抽出物萃取之流程 27
3.2 試驗材料 28
3.2.1 樟芝菌株 28
3.2.2 幾丁聚醣 28
3.2.3 樟屬植物 28
3.2.4 培養基 29
3.2.5 試驗藥品與儀器 30
3.3 試驗方法 32
3.3.1 樟芝菌絲體之培育 32
3.3.2 幾丁質與幾丁聚醣之製備 33
3.3.3 樟屬抽出物之萃取與添加 33
3.3.4 樟芝菌絲體固態培養試驗 34
3.3.5 樟芝菌絲體液體震盪培養試驗 35
3.3.6 樟芝菌絲體製備及培養液之分離與純化 36
3.3.7 樟芝培養液之葡萄糖胺測定 36
3.3.8 樟芝培養液之多醣萃取與分析 36
3.3.9 樟芝菌絲體分析抗氧化能力測定 37
3.4 統計分析 38
第4章 結果與討論 39
4.1 固態培養樟芝菌絲體 39
4.1.1 菌絲體於固態培養基之生長速率 39
4.1.2 菌絲體於不同去乙醯度幾丁聚醣下之生長情形 41
4.2 樟芝菌絲體震盪培養之活性生成物 56
4.2.1 不同去乙醯度幾丁聚醣對葡萄糖胺與胞外多醣生成之
影響 56
4.2.2 不同樟屬抽出物對葡萄糖胺與胞外多醣生成之影響 59
4.4 樟芝菌絲體抗氧化能力測定 62
4.4.1 共軛雙烯(Conjugated diene)法測定 62
4.4.2 捕捉1,1-二苯基-2-苦味 基團(DPPH‧)能力測定 68
4.4.3 螯合亞鐵離子能力測定 74
第5章 結論與未來展望 80
5.1 結論 80
5.2 建議 81
參考文獻 82
附錄 90
作者簡介 91
1. 王伯徹(2002)綜論保健用菇之研發。食品工業,34(5):1-2頁。
2. 王伯徹(1992)認識食藥用菇。食品工業,24(12):8-15頁。
3. 水野卓、川合正允,賴慶亮譯(1997)菇類的化學‧生化學。國立編譯館,vii-xi頁。
4. 水野卓、川合正允,賴慶亮譯(1997)菇類的化學‧生化學。國立編譯館,3:3-10頁。
5. 朱建儒(2003)探討通氣量對於樟芝醱酵生產生物鹼之影響。國立中央大學化學工程與材料工程研究所碩士論文,60頁。
6. 吳昇原(2002)牛樟抽出物對樟芝生長影響之探討。國立台灣大學森林學研究所碩士論文。
7. 吳家成(2001)幾丁質與幾丁聚醣之理化性質。食品工業,1-7頁。
8. 吳真誼(1995)以幾丁聚醣自葡萄柚汁脫酸、澄清及抗菌之研究。東海大學食品科學研究所。
9. 李一宏(2003)樟芝菌絲體之培養及其多醣體抗乙型肝炎病毒活性評估。中國醫藥學院中國藥學研究所,29:15-19頁。
10. 周婉萍(1993)Bacillus coagulans NTU-FC-I 幾丁質酶之研究。國立台灣大學農業化學研究所碩士班論文。
11. 林靖超(2006)添加酯肪酸對液態培養巴西蘑菇菌絲體的抗氧化能力及多醣體之影響。國立屏東科技大學生物機電工程所碩士論文,6-7頁。
12. 宮志遠、于淑芳、曲玲(2002)碳、氮營養對杏鮑菇菌絲生長的影響。 中國食用菌,21(3):24-25頁。
13. 許淳鈞(2005)探討培養基組成對巴西洋菇發酵生產活性多醣及對其特性之影響。國立中央大學化學工程與材料工程研究所碩士論文。
14. 許勝傑、陳清農、陳勁初(2000)樟芝宿主專一性之探討。台灣農業化學與食品科學,38(6):533-539頁。
15. 高曉薇(1991)台灣靈芝新種靈芝之三帖類成分研究。臺北醫學院天然藥物醫學研究所碩士。
16. 陳勁初、林文鑫、陳清農、許勝傑、黃仕政、陳炎鍊(2001)台灣特有真菌–樟芝菌絲體芝開發。Fung. Sci. 16 (1, 2):7-22頁。
17. 陳美惠、莊淑惠、吳志律(1999)幾丁聚醣的物化特性。食品工業月刊,31(10):1-6頁。
18. 陳清農、高炳煌、楊梅春、陳勁初(1999)台灣森林中的寶石樟芝。鄉間小路,1:22-23頁。
19. 陳清農、許勝傑、陳勁初(2000)紅色旋風勢不可擋再談台灣樟芝。鄉間小路,26(5):48-50頁。
20. 陳啟楨、蘇慶華、藍明煌(2001)樟芝固體栽培其生物活性研究。Fung. Sci. 16 (1, 2):65-72頁。
21. 陳慶源(1999)以真菌發酵法生產幾丁聚醣。食品工業,31: 7-18頁。
22. 張志堂(2003)培養條件對靈芝多醣生成及性質之影響。東海大學化學工程學系碩士論文,215頁。
23. 張怡潔(2003)樟屬植物之牛樟芝菌絲體生長促進因子。臺北醫藥大學生藥學研究所,88-89頁。
24. 張東柱(1997)牛樟之病害。牛樟生物學及育林技術研討會論文集,林業叢刊第72號,12(3):127-131頁。
25. 張淑芬(2001)食藥用菇類搖瓶液體培養條件之探討。食品工業,33(7):41-42頁。
26. 張潔娜(2002)舞菇、羊肚菌與雞肉絲菇菌絲體之抗氧化及抗致突變性質。國立中興大學食品科學系碩士論文,155頁。
27. 黃賜源(1996)靈芝液態培養及氣舉式生化反應器應用之研究。東海大學化學工程研究所碩士論文。
28. 黃鈴娟(2000)樟芝與姬松茸之抗氧化性質及其多醣組成分析。國立中興大學食品科學系碩士論文,149頁
29. 範貞綺(2003)樟芝固態栽培與液態發酵菌絲體之成份及其活性之研究。南台科技大學化學工程研究所。
30. 楊芳鏘、楊明哲(2001)菌絲狀真菌之深層培養技術。化工技術,176-189頁。
31. 劉英俊、江金追(1990)微生物應用工業。中央圖書出版社。
32. 劉景文(1997)農業及環境微生物菌種之收存與應用:食藥用菇類之栽培與應用。No. S-86-013:16-25頁。
33. 蔡雁暉(2002)樟芝深層培養液及其多醣體之抗氧化特性。國立中興大學食品科學研究所碩士論文。
34. 戴宇昀(2001)樟芝菌絲體與子實體對四氯化碳及酒精誘導之慢性急性肝損傷之保肝功能評估。國立中興大學食品科學系研究所碩士論文。
35. 蔣雅慧(2004)添加物對樟芝菌絲與抗氧化活性生成之影響。東海大學化學工程學系碩士論文,62頁。
36. 簡秋源、姜宏哲、陳淑貞(1997)牛樟菇培養性狀及其三萜類成分分析之研究。牛樟研討會論文集,林業叢刊第72 號,133-137頁。
37. 廖英明(1998)菇類中的許不了-樟芝。農業世界雜誌,176:76-79頁。
38. Anderson, J. W., R. J. Nicolosi, and J. F. Borzelleca (2004) Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food Chemistry. 43: 187-201.
39. Austin, P. R., C. T. Brine, J. E. Castle, and J. P. Zikakis (1981) Chitin: New facets of research. Science 212 (5): 749-753.
40. Blankenshipa, J. D., M. J. Spieringa, H. H. Wilkinsona, F. F. Fanninb, L. P. Bushb, and C. L. Schardla (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry. 58, 395-401.
41. Brine, C. J., and P. R. Austin (1981) Chitin variability with species and method of preparation. Comparative Biochemistry and Physiology. 69: 283-286.
42. Chang, K. L. B., G. Tsai, J. Lee, and W. R. Fu (1997) Heterogeneous N-deacetylation of Chitin in Alkaline Solution. Carbohydrate Research. 303: 327-332.
43. Chang, K. L. B., and G. Tsai (1997) Response Surface Optimization and Kinetics of Isolating Chitin from Pink Shrimp (Solenocera) . Jaurnal of Agriculture and Food Chemistry. 45: 1900-1904.
44. Chang, T. T., and W. N. Chou (1995) Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycological Research. 99: 756-758.
45. Chang, T. T., and W. N. Chou (2003) Five polypores (Basidiomycota) new to Taiwan and their cultural characteristics. Bot. Bull. Acad. Sin. 44: 245-251.
46. Chang, T. T., and W. N. Chou (2004) Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Bot. Bull. Acad. Sin. 45: 347-352.
47. Chang, T. T., and W. R. Wang (2005) Basidiomatal formation of Antrodia cinnamomea on artificial agar media. Bot. Bull. Acad. Sin. 46:151-154.
48. Cody, R. M. (1989) Distribution of chitinase and chitobiase in Bacillus. Current Microbiology. 19: 201-205..
49. Dinis, T. C. P., V. M. C. Madeira, and L. M. Almeida (1994) Action of phenolic derivates (acetoaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archive of Biochemistry and Biophysics. 315: 161-169.
50. Dovanti, A., A. A. Bignamini, and A. L. Rovati (1980) Therapeutic Activity of Oral Glucosamine Sulphate in Osteoarthrosis: A Placebo-Controlled Double-Blind Investigation. Clinical Therapeutics. 3(4): 266-272.
51. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350-356.
52. Flach, J., P. E. Pilet, and P. Jolles (1992) What’s new in chitinase research ? Experienta, 48: 701-716.
53. Forage, R. G., D. E. F. Harrison, and D. E. Pitt (1985) Effect of environment on microbial activity. Comprehensive Biotechnology. 1: 253-279.
54. Hawksworth, D. L. (1991) The fungi dimention of biodiversity:magnitude, significance, and conservation. Mycological Research. 95: 641-655.
55. Hiroi, J., K. Ohara, K. Kobayashi, and T. Fujii (1998) Effects of FR50948, a new orally active antiallergic agent, in experiment allergic models. Japanese Journal Pharmacology. 46(4): 337-348.
56. Hseu, Y. C., W. C. Chang, Y. T. Hseu, C. Y. Lee, Y. J. Yech, P. C. Chen, J. Y. Chen, and H. L. Yang (2002) Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sciences. 71, 469-82.
57. Hsiao, G., M. Y. Shen, K. H. Lin, M. H. Lan, L. Y. Wu, D. S. Chou, C. H. Lin, C. H. Su, and J. R. Sheu (2003) Antioxidative and hepatoprotective effects of Antrodia camphorata extract. Jaurnal of Agriculture and Food Chemistry. 51, 3302-8.
58. Huang, L. C., S. J. Huang, C. C. Chen, and J. L. Mau (1999) Antioxidant properties of Antrodia camphorate, Proceedings of 3rd International Conference on Mushroom Biology & Mushroom Products. 275-83.
59. Jason, T., M. D., MS., and M. P. H. (1998) THE ARTHRITIS CURE, Dee Ten Publishing Co., Ltd. 31:18-43.
60. Kang, A., Y. Wang, L. M. Harvey, and B. McNeil (2000) Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop. Bioprocess Engineering. 23: 69-74.
61. Kim, S. W., H. J. Hwang, C. P. Xu, J. M. Sung, J. W. Choi, and J. W. Yun (2003) Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharide by Cordyceps militaris C738. Applied Microbiology and Biotechnology. 94: 120-126.
62. Knorr, D. (1984) Use of chitinous polymers in food. Food Technology. 38(1): 85-97.
63. Lee, I. H., C. T. Chen, H. C. Chen, W. C. Hsu, and M. K. Lu (2002) Sugar flux in response to carbohydrate-feeding of cultured Antrodia camphorata, a recently described medicinal fungus in Taiwan. Journal of Chinese Medicine. 13(1): 21-31.
64. Lee, H., M. Song, Y. Yu, and S. Hwang (2003) Production of Gandoderma lucidum mycelium using cheese whye as an alternative sabstrate: response surface analysis and biokinetics. Biochemical Engineering Journal. 15: 93-99.
65. Liao, J. C. (1996) Flora of Taiwan; Lauraceae,2 nd ed. Editorial Committee of the Flora of Taiwan. Vol.Ⅱ,437-448.
66. Lingnert, H., K. Vallentin, and C. E. Eriksson (1979) Measurement of antioxidative effect in model system, Journal of Food Protection and Preservation. 3: 87-103.
67. Mau, J. L., H. C. Lin, and S. F. Song (2002) Antioxidant properties of several specialty mushrooms. Food Reviews International. 35: 519-526.
68. Mau, J. L., P. N. Huang, S. J. Huang, and C. C. Chen (2004) Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorate mycelia, Food Chemistry. 86: 25-31.
69. Müeller-Faßbender, H. (1994) Glucosamine Sulfate Compared to Ibuprofen in Osteoarthritis of the Knee. Osteoarthritis and Cartilage. 2: 61-69.
70. Mizuno, T. (1995) Bioactive biomolecules of mushrooms: Food function and medicinal effect of mushroom fungi. Food Reviews International. 11: 7-21.
71. Muzzarelli, R. A. A., and R. Rocchetti (1985) Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers, 5: 461-472.
72. Peters, H. U., H. Herbst, P. G. M. Hesselink, H. Lunsdort, A. Schumpe, and W.D. Deckwer (1989) The influence of agitation rate on Xanthan production by Xanthomonas campestris. Biotechnology and Bioengineering. 34: 1393-1397.
73. Ramarathnam, N., T. Osawa, H. Ochi, and S. Kawakish (1995) The contribution of plant food antioxidants to human health. Trends in Food Science and Technology. 6: 75-82.
74. Marchessaault, R. H., Y. Deslandes, K. Ogawa, and P. R. Sundararajan: (1982) Glucosamine Sulfate Compared to Ibuprofen in Osteoarthritis of the Knee. Canadian Journal of Chemistry Engineering. 5: 461-481
75. Hackman, R. H. (1954) Studies on chitin. I. Enzymatic degradation of chitin and. chitin esters. Journal of Biological Sciences. 7: 168-178.
76. Shimahara, K., Y. Takiguchi, K. Ohkouchi, and K. O. Kitamura (1984) Okada in Chitin, Chitosan and related enzymes, edited by P. J. Zikakis (Academic Press, Orlando). 239-255.
77. Sheldon, M., and M. D. Cooper (1999) Improving outcomes in osteoarthritis: How to help patients stay a step ahead of the pain. Postgraduate Medicine. 105(6): 29-42.
78. Shuler, M. L., and F. Kargi (1992) Bioprocess Engineering[M]. New Jersey: Prentice-Hall. Inc. 58-102.
79. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura (1992) Antioxidative properties of xanthane on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agriculture and Food Chemistry. 40: 495.
80. Tang, Y. J., and J. J. Zhong (2002) Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme and Microbial Technology. 31: 20-28.
81. Tang, Y. J., and J. J. Zhong (2003) Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme and Microbial Technology. 32:478-484.
82. Tominaga, Y. (1978) Tricholoma matsutake. In Edible mushroom, 683-697.
83. Tsai, Z. T., and S. L. Liaw (1985) The use and the effect of Ganoderma. San Yun Press: Taichung, Taiwan, pp.116.
84. Tsuji, A., T. Kinoshita, and M. Hoshino (1969) Analytical chemical studies on amino sugars. II. Deterimation of hexosamines using 3-mthyl-2- benzothiazolone hydrazone hydrochloride. Chemical Pharmaceutical Bulletin. 17: 1505-1510.
85. Udea, M., and M. Arai (1992) Purification and some properties of chitinase from Aeromonase sp. No. 10S-24. Bioscience Biotechnology and Biochemistry. 56: 460-469.
86. Ukawa, Y., H. Ito, and M. Hisamatsu (2000) Antitumor effectsof (1→3)-β-D-glucan purified from newly cultivated mushroom, hatakeshimeji (Lyophyllum decastes Sing.). Journal of Bioscience and Bioengineering. 90(1): 98-104.
87. Wang, S. Y., M. L. Hsu, H. C. Hsu, C. H. Tzeng, S. S. Lee, M. S. Shiao, and C. K. Ho (1997) The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. International Journal of Cancer. 70: 699-795.
88. Wang, Y. Y., K. H. Khoo, S. T. Chen, C. C. Lin, C. H. Wong, and C. H. Lin (2002) Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorganic & Medicinal Chemistry. 10: 1057-1062.
89. Wu, S. H., L. Ryvarden, and T. T. Chang (1997) Antrodia camphorata ("niu-chang- chih"), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 38: 273-275.
90. Wu, J. Z., P. C. K. Cheung, K. H. Wong, and N. L. Huang (2003) Studies on submerged fermentation of Pleurotus tuber-regium(Fr.)Singer-Part 1: physical and chemical factors affecting the rate of mycelial growth and bioconversion efficiency. Food Chemistry. 81: 389-393.
91. Xu, C. P., and J. W. Yun (2003) Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and redression analysis. Biotechnology and Appled Biochemistry. 38: 193-199.
92. Xu, C. P., S. W. Kim, H. J. Hwang, and J. W. Choi (2003) Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochemistry. 38: 1025-1030.
93. Yang, F. C., and C. B. Liau (1998) The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochemistry. 33 (5): 547-553.
94. Yang, F. C., H. C. Huang, and M. J. Yang (2003) The influence of environmental conditions on the mycelia growth of Antrodia cinnamomea in submerged sultures. Enzyme and Microbial Technology. 33: 395-402.
95. Zang, M., and C. H. Su (1990) Ganoderma camphoratum, a new taxon in genus Ganoderma from Taiwan, China. Acta. Bot. Yunnanica. 12:395-396.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top