跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范巧蕾
研究生(外文):Chiao-Lei Fan
論文名稱:以超臨界流體技術製備生質柴油的油品性質和引擎特性研究
論文名稱(外文):An investigation on fuel properties and characteristics of engine performance of biodiesel produced by supercritical fluid technique
指導教授:林成原林成原引用關係
指導教授(外文):Cherng-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:118
中文關鍵詞:超臨界流體生質柴油苦茶油廢食用油
外文關鍵詞:supercritical fluidbiodieselCamellia oleifera Abel oilused cooking oil
相關次數:
  • 被引用被引用:6
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:1
摘要(中)
生質柴油是以動、植物油脂或廢食用油為原料所製造而成的可再生式清潔燃料或燃料添加劑。爲縮短轉酯化反應時間以提高生質柴油產率,達到降低其生產成本的目的,本研究使用超臨界反應系統將甲醇在超臨界流體狀態下分別與廢食用油以及苦茶油反應生成生質柴油,並分析探討其油品性質以及引擎性能特性。研究結果顯示,油中的水分及游離脂肪酸的含量對酯交換反應無影響,因此適用各類油脂。另外,本製程因為可以不需使用觸媒,而節省觸媒材料及去除觸媒步驟之成本;在油品特性方面,廢食用油生質柴油與市售生質柴油比較後發現:有較高的熱值、閃火點、比重及含水量,有較低的黏度、殘碳量及十六烷指數。苦茶油生質柴油與市售生質柴油比較後發現:有較高的閃火點及比重,有較低的熱值、黏度、含水量、殘碳量及十六烷指數;在生質柴油之柴油引擎性能和排氣特性方面,廢食用油生質柴油與市售生質柴油比較後發現:有較低的燃油消耗率、bsfc值、過剩空氣率及O2排放濃度,有較高的制動燃料轉換效率、燃料空氣當量比、CO排放濃度、CO2排放濃度及NOx排放濃度。苦茶油生質柴油與市售生質柴油比較後發現:有較高的燃油消耗率、bsfc值、燃料空氣當量比、CO排放濃度、CO2排放濃度及NOx排放濃度,有較低的制動燃料轉換效率、過剩空氣率、排氣溫度及O2排放濃度。
摘要(英)
Biodiesel which is produced from vegetable oil, animal fat or used cooking oil has been considered as clean fuel or fuel additive. Raw oil, alcohol and catalyst are generally reacted under subcritical pressure to produce biodiesel. In this study, supercritical methanol technique is applied to produce boidiesel by using used cooking oil and Camellia oleifera Abel oil as raw material in order to curtail transesterification time and production cost. The biodiesel is thereafter analyzed its fuel properties and engine performance for further improvement of process. The experimental results show that the effects of contents of water and free fatty acids in raw oil are insignificant on transesterification reaction and therefore this technique can be applicable to most of raw oils. In addition, no catalyst is required in this process and thus the costs of catalyst additive and removal are reduced. In comparison with those properties of the commercial biodiesel, the biodiesel of used cooking oil has higher heating value, flash point, specific gravity and water content while lower kinematic viscosity, carbon residue and cetane index. The biodiesel of Camellia oleifera Abel oil has higher flash point and specific gravity while lower heating value, kinematic viscosity, water content, carbon residue and cetane index than those of the commercial biodiesel. In the aspect of engine characteristics, the biodiesel of used cooking oil appeared to have lower fuel consumption rate, bsfc, excess air and O2 emission while higher brake fuel conversion rate, equivalence ratio, CO, CO2 and NOx emissions than the properties of the commercial biodiesel. The biodiesel of Camellia oleifera Abel oil, in comparison with those of the commercial biodiesel has larger fuel consumption rate, bsfc, equivalence ratio, CO, CO2 and NOx emissions, while lower brake fuel conversion rate, excess air, exhaust gas temperature and O2 emission.
目錄
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
第二章 文獻回顧 5
2-1 動植物油脂的利用方法 5
2-1-1 稀釋(dilution) 5
2-1-2 裂解(pyrolysis) 5
2-1-3 微乳化(micro-emulsion) 6
2-1-4 胺化(amidation of fats and oils with diethylamine) 6
2-1-5 轉酯化(transesterification) 6
2-2 以超臨界流體技術提煉生質柴油 10
2-2-1 超臨界流體定義 10
2-2-2 超臨界流體的理化特性 11
2-2-3 超臨界流體中化學反應的特點 12
2-2-4 超臨界製備方法 13
2-2-5 超臨界技術的反應機制及其動力學 14
2-3 影響超臨界流體製備反應的因素 17
2-3-1 醇油比對超臨界製備反應的影響 17
2-3-2 反應溫度對超臨界製備反應的影響 17
2-3-3 水和游離脂肪酸對超臨界製備的影響 17
2-3-4 溶解參數(solubility parameter)對超臨界製備
反應的影響 18
2-3-5 加入共溶劑對超臨界製備反應的影響 21
2-3-6 壓力對超臨界製備的影響 21
2-3-7 三酸甘油脂與不同醇進行酯交換反應的比較 22
2-3-8 不同脂肪酸的酯交換速率及產率比較 22
2-3-9 脂肪酸與不同醇進行烷基酯化反應的比較 22
2-4 使用廢食用油提煉生質柴油 23
2-4-1 廢食用油脂的再資源化 23
2-4-2 廢食用油的性質 24
2-4-3 使用廢食用油提煉生質柴油的製程 25
2-5 苦茶油的性質 25
第三章 實驗設備與方法 27
3-1 實驗儀器與設備 27
3-1-1 提煉生質柴油之設備 27
3-1-2 油品性質分析之設備 28
3-1-3 引擎測試實驗之設備 31
3-2 實驗材料 34
3-2-1 樣品 34
3-2-2 化學藥品 34
3-3 生質柴油之提煉步驟 34
3-4 油品性質分析之實驗步驟 35
3-4-1 生質柴油熱值(heating value,cal/g)測定之
實驗步驟 36
3-4-2 殘碳量測試(carbon residue on 10%
distillation residue,wt. %)[76] 36
3-4-3 生質柴油閃火點(flash point,°C)測定之實驗步驟 38
3-4-4 生質柴油密度(Density at 15 °C,g/mL)測定之
實驗步驟 38
3-4-5 生質柴油黏度(Kinematic viscosity,at 40 °C cst)
測定之實驗步驟 39
3-4-6 蒸餾溫度測定 39
3-4-7 含水量測定 40
3-4-8 生質柴油酸價(acid number,mg KOH/g)測定之
實驗步驟[83] 41
3-4-9 生質柴油過氧化價(peroxide value)測定之
實驗步驟[84] 42
3-5 生質柴油之引擎測試實驗步驟 43
3-5-1 實驗設備校正與檢查 43
3-5-2 引擎數據量測工作 45
3-5-3 引擎實驗之後續處理 46
第四章 結果與討論 47
4-1 使用廢食用油提煉生質柴油的油品性質及引擎性能
與排氣特性 47
4-1-1 使用廢食用油提煉之生質柴油的油品性質分析 47
4-1-2 使用廢食用油提煉之生質柴油的引擎性能與
排氣特性分析 51
4-2 使用苦茶油提煉生質柴油的油品性質及引擎性能
與排氣特性 56
4-2-1 使用苦茶油提煉之生質柴油的油品性質分析 56
4-2-2 使用苦茶油提煉之生質柴油的引擎性能與排氣特性 60
第五章 結論與建議 65
5-1 結論 65
5-1-1 製程分析 65
5-1-2 油品性質分析 65
5-1-3 生質柴油之柴油引擎性能和排氣特性測試分析 66
5-2 對未來研究的建議 67
參考文獻 68
附圖 78
附表 106
附錄一:燃燒效率、過剩空氣及CO2之換算公式[78] 114
附錄二:本研究實驗測試結果 115


圖目錄
圖2-1 固體-液體-氣體-超臨界流體相圖[31] 78
圖2-2 植物油在超臨界甲醇中的反應機制[37] 78
圖2-3 存在水和游離脂肪酸的超臨界製備反應[37] 79
圖2-4 二氧化碳在不同壓力與溫度條件下之密度[51] 80
圖2-5 二氧化碳溶解度參數與壓力之關係[52] 81
圖2-6 不同壓力下二氧化碳溶解度參數與溫度之關係[53] 81
圖3-1 超臨界流體反應系統示意圖 82
圖3-2 生質柴油煉製流程圖 83
圖3-3 油品性質量測流程圖 83
圖3-4 引擎測試設備及粒狀物收集系統配置圖 84
圖3-5 柴油引擎實驗流程圖 85
圖4-1 各油品之熱值比較圖 86
圖4-2 各項油品之閃火點 86
圖4-3 各油品的黏度 87
圖4-4 各油品的比重 87
圖4-5 各油品的含水量 88
圖4-6 各油品的殘碳量 88
圖4-7 各油品的蒸餾溫度 89
圖4-8 各油品的十六烷指數 89
圖4-9 各油品的過氧化價 90
圖4-10 各油品的酸價 90
圖4-11 各油品在固定扭力、變動轉速下之燃油消耗率 91
圖4-12 各油品在固定扭力、變動轉速下之bsfc 91
圖4-13 各油品在固定扭力、變動轉速下之制動燃料轉換效率 92
圖4-14 各油品在固定扭力、變動轉速下之過剩空氣率 92
圖4-15 各油品在固定扭力、變動轉速下之燃料/空氣當量比 93
圖4-16 各油品在固定扭力、變動轉速下之排氣溫度 93
圖4-17 各油品在固定扭力、變動轉速下之CO排放濃度 94
圖4-18 各油品在固定扭力、變動轉速下之CO2排放濃度 94
圖4-19 各油品在固定扭力、變動轉速下之NOX排放濃度 95
圖4-20 各油品在固定扭力、變動轉速下之O2排放濃度 95
圖4-21 各油品之熱值比較圖 96
圖4-22 各項油品之閃火點 96
圖4-23 各油品的黏度 97
圖4-24 各油品的比重 97
圖4-25 各油品的含水量 98
圖4-26 各油品的殘碳量 98
圖4-27 各油品的蒸餾溫度 99
圖4-28 各油品的十六烷指數 99
圖4-29 各油品的過氧化價 100
圖4-30 各油品的酸價 100
圖4-31 各油品在固定扭力、變動轉速下之燃油消耗率 101
圖4-32 各油品在固定扭力、變動轉速下之bsfc 101
圖4-33 各油品在固定扭力、變動轉速下之制動燃料轉換效率 102
圖4-34 各油品在固定扭力、變動轉速下之過剩空氣率 102
圖4-35 各油品在固定扭力、變動轉速下之燃料/空氣當量比 103
圖4-36 各油品在固定扭力、變動轉速下之排氣溫度 103
圖4-37 各油品在固定扭力、變動轉速下之CO排放濃度 104
圖4-38 各油品在固定扭力、變動轉速下之CO2排放濃度 104
圖4-39 各油品在固定扭力、變動轉速下之NOX排放濃度 105
圖4-40 各油品在固定扭力、變動轉速下之O2排放濃度 105


表目錄
表1-1 世界初級能源消費量 106
表1-2 2004年底化石燃料蘊藏量及使用量 107
表1-3 我國再生能源發展之現況與目標 107
表1-4 2001年全球各種再生能源發電裝置、產量及成本 108
表1-5 2001年全球各種再生能源熱利用產出情形 108
表2-1 常用之超臨界流體的臨界性質[32] 109
表2-2 氣體、超臨界流體與液體之相關物理性質之比較[33] 109
表2-3 染料基團之莫耳吸引力常數值[48,49] 110
表3-1 攪拌頭規格表 111
表3-2 超臨界流體反應系統詳細規格 111
表3-3 蒸餾溫度儀規格表 111
表3-4 柴油引擎規格表 112
表3-5 渦電流動力計規格表 112
表3-6 廢氣分析儀規格表 112
表3-7 煙度計規格表 113
表3-8 ASTM及EN生質柴油規範[79,80] 113
[1] BP Statistical Review of World Energy, 2005。
[2] Zhang, X., Peterson, C.L., Reece, D., Möller, G., Haws, R., “Biodegradability of biodiesel in the aquatic environment,” Transactions of the American Society of Agricultural Engineers, Vol. 41, Iss. 5, pp. 1423-1430, 1998.
[3] University of Idaho, Department of Biological and Agricultural Engineering, “Acute toxicity of biodiesel to freshwater and marine organisms,” Development of rapeseed biodiesel for use in high-speed diesel engines, Progress Report, pp. 117-131, 1996.
[4] Krawczyk, T., “Biodiesel alternative fuel makes inroads but hurdles remain,” Journal of American Oil Chemists’ Society Inform, Vol. 7, Iss. 8, pp. 801-815, 1996.
[5] Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, C., Sakellaropoulos, F., “An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine,” Biomass and Bioenergy, Vol. 24, Iss. 2, pp. 141-149, 2003.
[6] Monyem, A., Gerpen, J.H.V., “The effect of biodiesel oxidation on engine performance and emissions,” Biomass and Bioenergy, Vol. 20, Iss. 4, pp. 317-325, 2001.
[7] Giannelos, P.N., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., “Tobacco seed oil as an alternative diesel fuel: physical and chemical properties,” Industrial Crops and Products, Vol. 16, Iss.1, pp. 1-9, 2002.
[8] Szybist, J.P., Boehman, A.L., Taylor, J.D., McCormick, R.L.,“Evaluation of formulation strategies to eliminate the biodiesel NOx effect,”Fuel Processing Technology, Vol. 86, Iss. 10, pp. 1109-1126, 2005.
[9] Körbitz, W., “Biodiesel production in Europe and North American, an encouraging prospect,” Renewable Energy, Vol. 16, Iss. 1-4, pp. 1078-1083, 1999.
[10] Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M.J., Navarro, A., “Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow,” Biomass and Bioenergy, Vol. 18, Iss. 6, pp. 515-527, 2000.
[11] Ma, F., Hanna, M.A.,“Biodiesel production:a review,”Bioresource Technology, Vol. 70, Iss. 1, pp. 1-15, 1999.
[12] Laszlo, J.A., Compton, D.L.,“Enzymatic Glycerolysis and Transesterification of Vegetable Oil for Enhanced Production of Feruloylated Glycerols,”Journal of American Oil Chemists' Society, Vol. 83, Iss. 9, pp. 765-771, 2006.
[13] Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., Pryde, E. H., “Diesel fuel from thermal decomposition of soybean oil,” Journal of American Oil Chemists' Society, Vol. 65, Iss. 11, pp. 1781-1786, 1988.
[14] Chang, C.C., Wan, S.W., “China’s motor fuels from tung oil,” Industrial and Engineering Chemistry, Vol. 39, Iss. 1, pp. 1543-1548, 1947.
[15] Alencar, J.W., Alves, P.B., Craveiro, A.A., “Pyrolysis of tropical vegetable oils,” Agricultural and Food Chemistry, Vol. 31, Iss. 6, pp. 1268-1270, 1983.
[16] Pioch, D., Lozano, P., Rasoanantoandro, M.C., Graille, J., Geneste, P., Guida, A., “Biofuels from catalytic cracking of tropical vegetable oils,” Oléagineux, Vol. 48, Iss. 6, pp. 289-291, 1993.
[17] Billaud, F., Dominguez, V., Broutin, P., Busson, C., “Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil,” American Oil Chemists' Society, Vol. 72, Iss. 10, pp. 1149-1154, 1995.
[18] Schwab, A.W., Bagby, M.O., Freedman, B., “Preparation and properties of diesel fuels from vegetable oil, ” Fuel, Vol. 66, Iss. 10, pp. 1372-1378, 1987.
[19] Pryde, E.H., “Vegetable oil as fuel alternatives-symposium overview,” American Oil Chemists' Society, Vol. 61, Iss. 10, pp. 1609-1610, 1984.
[20] Altin, R., Cetinkaya, S., Yucesu, H. S. “The potential of using vegetable oil fuels as fuel for diesel engines,” Energy Conversion and Management, Vol. 42, pp. 529-538, 2001.
[21] Billaud, F., Dominguez, V., Broutin, P., Busson, C., “Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil,” Journal of American Oil Chemists' Society, Vol. 72, Iss. 10, pp. 1149-1154, 1995.
[22] Lang, X., Dalai, A.K., Bakhshi, N.N., Reaney, M.J., Hertz, P.B., “Preparation and Characterization of Biodiesels from Various Bio-oils ,” Bioresource Technology, Vol. 80, Iss. 1, pp. 53-62, 2001.
[23] Peterson, C.L., Feldman, M., Korus, R., Auld, D.L., “ Batch Type Transesterification Process for Winter Rape Oil,”Applied Engineering in Agriculture, Vol. 7, pp. 711-716, 1991.
[24] Ma, F. , Clements, L. D., Hanna, M. A., “The effects of catalyst, free fatty acids and water on transesterification of beef tallow,” American Society of Agricultural Engineers Transactions, Vol. 41, Iss. 5, pp. 1261-1264, 1998.
[25] Haas, M.J., Michaiski, P.J., Runyon, S., Nunez, A. , Scott, K.M., “Production of FAME from Acid Oil, a By-product of Vegetable Oil Refining,” Journal of American Oil Chemists' Society, Vol. 80, Iss. 1, pp. 97-102, 2003.
[26] Zullaikah, S., Lai, C.C., Vali, S. R., Ju, Y.H., “A two-step acid-catalyzed process for the production of biodiesel from rice bran oil,” Bioresource Technology, Vol. 96, Iss. 17, pp. 1889-1896, 2005.
[27] Shimada, Y., Watanabe, Y., Samujawa, T., Sugihara, A., Noda, H., Fukuda, H., Tominaga, Y., “Conversion of Vegetable Oil to Biodoesel Using Immobilized Candida antarctica Lipase,” Journal of American Oil Chemists' Society, Vol. 76, pp. 789-793, 1999.
[28] Lee, K.T., Foglia, T.A., Chang, K.S., “ Production of Alkyl Ester as Biodiesel from Fractionated Lard and Restaurant Grease,” Journal of American Oil Chemists' Society, Vol. 79, Iss. 2, pp. 191-195, 2002.
[29] De Giorgi, M. R., Cadoni, E., Maricca, D., Piras, A. “Dyeing polyester fibres with disperse dyes in supercritical CO2,” Dyes and Pigments, Vol. 60, Iss. 3, pp. 249-264 , 2004.
[30] Madras, G., Kolluru, C., Kumar, R., “Synthesis of biodiesel in supercritical fluids,” Fuel, Vol. 83, Iss. 14-15, pp. 2029-2033, 2004.
[31] Williams, D. F., “Extraction with supercritical gases,” Chemical Engineering Science, Vol. 36, Iss. 11, pp. 1769-1782, 1981.
[32] Nerin, C., Asensio, E., Jimenez, C., “Supercritical Fluid Extraction of Potential Migrants from Paper and Board Intended for Use As Food Packaging Materials,” Anal. Chem., Vol. 74, Iss. 22, pp. 5831-5836, 2002.
[33] Luque de Castro, M. D., Valcárcel, M., Tena, M. T., Analytical supercritical fluid extraction, Springer-Verlag, Berlin, 1994.
[34] Ting, S.S.T., Tomasko, D.L., Foster, N.R., Macnaughton, S.J., “Chemical-physical interpretation of cosolvent effects in supercritical fluids,” Industrial & Engineering Chemistry Research, Vol. 32, Iss. 7, pp. 1482-1487, 1993.
[35] Ekart, M.P., Bennett, K.L., Ekart, S.M., Gurdial, G.S., Liotta, C.L., Eckert, C.A., “Cosolvent interactions in supercritical fluid solutions ,” AIChE, Vol. 39, Iss. 2 , pp. 235-248, 1993.
[36] Zhong, M., Han, B., Yan, H., Peng, D.Y., “Effect of ethanol and n-octane on the solubility of stearic acid in the supercritical CO2,” Fluid Phase Equilibria, Vol. 134, Iss. 1-2, pp. 175-183, 1997.
[37] Kusdiana, D., Saka, S., “Effects of water on biodiesel fuel production by supercritical methanol treatment,” Bioresource Technology, Vol. 91, Iss. 3, pp. 289-295, 2004.
[38] Demirbas, A., “Biodiesel from vegetable oils via transesterification in supercritical methanol,” Energy Conversion and Management, Vol. 43, Iss. 17, pp. 2349-2356, 2002.
[39] Warabi, Y., Kusdiana, D., Saka, S., “Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols , ” Bioresource Technology, Vol. 91, Iss. 3, pp. 283-287, 2004.
[40] Diasakou, M., Louloudi, A., Papayannakos, N., “Kinetics of the non-catalytic transesterification of soybean oil,” Fuel, Vol. 77, Iss. 12, pp. 1253-1397, 1998.
[41] Kusdiana, D., Saka, S., “Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol,” Fuel, Vol. 80, Iss. 5, pp. 693-698, 2001.
[42] Encinar, J. M., Gonzalez, J. F., Sabio, E., Ramiro, M. J., “Preparation and Properties of Biodiesel from Cynara cardunculus L. Oil,” Industrial & Engineering Chemistry Research, Vol. 38, Iss. 8, pp. 2927-2931, 1999.
[43] Freedman, B., Pryde, E.H., Mounts, T.L., “Variables affecting the yields of fatty esters from transesterified vegetable oils,” Journal of American Oil Chemists' Society, Vol. 61, Iss. 10, pp. 1638-1643, 1984.
[44] Hildebrand, J.H., “Solubility,” Journal of the American Chemical Society, Vol. 38, Iss. 8, pp. 1452-1473, 1916.
[45] Sarfraz, A.S., Howard, L.N., “Solubility Parameters,” Textile Research Journal, Vol. 52, Iss. 9, pp. 570-579, 1982
[46] Scatchard, G., “Equilibria in Non-electrolyte Solutions in Relation to the Vapor Pressures and Densities of the Components,” Chemical Reviews, Vol. 8, Iss. 2, pp. 321-333, 1931
[47] Hildebrand, J.H., Scott, R.L.,The Solubility of Non-electrolytes, 3th edition, Reinhold Publishing Corporation, New York, 1950.
[48] Small, P. A., “Some Factors Affecting the Solubility of Polymers,” Journal of Applied Chemistry, Vol. 3, Iss. 7, pp. 71-80, 1953
[49] Chianakwalam Ibe, E.,“The solubility parameter concept applied to disperse dyeing of polymers,” Journal of Applied Polymer Science,Vol. 14, Iss. 3, pp. 837-846, 2003.
[50] Giddings, J.C., Myers, M.N., Keller, R.A., “High Pressure Gas Chromatography of Nonvolatile Species,” Science, Vol. 162, Iss. 849, pp. 67-73, 1968.
[51] 朱玫瑰,超臨界流體萃取/氣相層析儀直接連線應用於分析大氣相中PAHs 之最佳化研究, 國立成功大學環境工程研究所碩士論文,臺南,1994。
[52] Via, J., Taylor, L.T., “Solving Process Problems with Supercritical Fluid Extraction,” Chemtech, Vol. 23, Iss. 11, pp. 38-44, 1993.
[53] Steven, B.H., “Analytical-Scale Supercritical Fluid Extraction,” Analytical Chemistry, Vol. 62, Iss. 11, pp. 633-642, 1990
[54] Barton, A.F.M., Handbook of Solubility and Other Cohesion Parameters, CRC Press, Florida, 1983.
[55] Deslandes, N., Bellenger, V., Jaffiol, F., Verdu, J., “Solubility parameters of a polyester composite material,” Journal of Applied Polymer Science, Vol. 69, Iss. 13, pp. 2663-2671, 1998.
[56] Ma, F., Clements, L. D., Hanna, M. A., “Biodiesel Fuel from Animal Fat Ancillary Studies on Transesterification of Beef Tallow,” Ind. Eng. Chem. Res., Vol. 37, Iss. 9, pp. 3768-3771, 1998.
[57] Tomasko, David L., Knutson, Barbara L., Pouillot, Frederic, Liotta, Charles L., Eckert, Charles A., “Spectroscopic study of structure and interactions in cosolvent-modified supercritical fluids, ” Journal of Physical Chemistry, Vol. 97, Iss. 45, pp. 11823-11834, 1972.
[58] Cao, W., Han, H., Zhang, J., “Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent,” Fuel, Vol. 84, Iss. 4, pp. 347-351, 2005.
[59] Dooley, Kerry M., Becnel, James M.,“Supercritical fluid extraction of polycyclic aromatic hydrocarbon mixtures from contaminated soils,” Industrial & Engineering Chemistry Research, Vol. 37, Iss. 2, pp. 584-594, 1998.
[60] Chen, P., Zhou, W., Tavlarides, L.L., “Remediation of polychlorinated biphenyl contaminated soils/sediments by supercritical fluid extraction,” Environmental Progress AIChE, Vol. 16, Iss. 3, pp. 227-236, 1997.
[61] Han, H., Cao, W., Zhang, J., “ Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent, ” Process Biochemistry, Vol. 40, Iss. 9, pp. 3148-3151, 2005.
[62] Saka, S., Kusdiana, D., “Biodiesel fuel from rapeseed oil as prepared in supercritical methanol,”Fuel, Vol. 80, Iss. 2, pp. 225-231, 2001.
[63] Demirbes, A., “Fuel properties and calculation of higher heating values of vegetable oils,”Fuel, Vol. 77, Iss. 9-10, pp. 1117-1120, 1998.
[64] Harvey, A.P., Mackley, M.R., Seliger, T., “Process intensification of biodiesel production using a continuous oscillatory flow reactor,”Journal of Chemical Technology and Biotechnology, Vol. 78, pp. 338-341, 2003.
[65] Bockwy, D., “Situation and development potential for the production of biodiesel-an international study,” UFOP., 2003.
[66] Dorado, M. P., Ballesteros, E., Arnal, J. M., Gómez, J., López, F. J., “Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil ,” Fuel, Vol. 82, Iss. 11, pp. 1311-1315, 2003.
[67] Goodrum, J. W., Eiteman, M. A., “Physical properties of low molecular weight triglycerides for the development of bio-diesel fuel models,” Bioresource Technology, Vol. 56, pp. 55-60, 1996.
[68] Tomasevic, A.V., Siler-Marinkovic, S.S., “Methanolysis of used frying oil,” Fuel Processing Technology, Vol. 81, Iss. 1, pp. 1-6, 2003.
[69] Subramanian, R., Nandini, K. E., Sheila, P. M., Gopalakrishna, A. G., Raghavarao, K. S. M. S., Nakajima, M., Kimura, T., Maekawa, T., “Membrane processing of used frying oils,” Journal of American Oil Chemists’ Society, Vol. 77, Iss. 3, pp. 323-328, 2000.
[70] Herbert, L., Lothar, F., “Process for the production of fatty acid esters of short-chain aliphatic alcohols from fats and / or oils containing free fatty acids,” United States Patent:4608202, 1986.
[71] Zhang, Y., Dube, M.A., Mclean, D.D., Kates, M., “Biodiesel production from waste cooking oil: 1. Process design and technological assessment,” Bioresource Technology, Vol. 89, pp. 1-16, 2003.
[72] Basu, H. N., Norris, M. E. “Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst,” United States Patent:5525126, 1996.
[73] Wang, C.L., Lin Y.H., “The extraction and analysis of oils from selected species of oiltea camellia in Taiwan,” Taiwan Journal of Forest Science, Bulletin of Taiwan Forestry Research Institute, Vol. 5, No. 1, pp. 11-15, 1990.
[74] Wang, C.L., Yin, H.W., and Liu, W.Y., “Stability examination of oiltea oil and analysis of oil’s tocopherol and sterol components,” Bulletin of Taiwan Forestry Research Institute New Series, Vol. 9, No. 1, pp. 73-86, 1994.
[75] 王岱淇,熱工實驗,高立圖書有限公司,pp. 127-134,1990。
[76] 劉垂芳、林啟瑞,機械工程實驗(三)-熱工實驗,全華科技圖書有限公司,pp. 121-125,1998。
[77] 李秀、賴滋漢,食品分析與檢驗,富林出版社,pp. 220-221,1976。
[78] Jones, B., Ready, K., “Bioblended fuel for use in light duty compression ignition engines,”Automotive Engineering Technology Department, Mankato State University, Bioenergy, 1998.
[79] ASTM D6751(Biodiesel Fuel Blend Stock, B100)
[80] EN14214(EU biodiesel fuel standard)
[81] DaNian, Z., Hanna, M.A., “Preparation and properties of methyl esters of beef tallow,” Bioresource Technology, Vol. 57, Iss. 2, pp. 137-142, 1996.
[82] Willard, W.P., Engineering fundamentals of the internal combustion engine, Prentice-Hall Inc, pp. 323-325, 1997
[83] “Official method. Acid value,” Journal of the American Oil Chemists’ Society, cd 3d-63, 1989.
[84] “Official method. Peroxide value,” Journal of the American Oil Chemists’ Society, cd 8, 1980
[85] Knothe, G., “Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters,” Fuel Processing Technology, Vol. 86, Iss. 10, pp. 1059-1070, 2005.
[86] Graboski, M.S., McCormic, R.L., “Combustion of fat and vegetable oil derived fuels in diesel engines,” Progress in Energy and Combustion Science, Vol. 24, Iss. 2, pp. 125-164, 1998.
[87] Yoshimoto,Y., Onodera, M., Tamaki, H., “Reduction of NOx, smoke, and bsfc in a diesel engine fueled by biodiesel emulsion with used frying oil,”SAE Technical Papers, Doc No. 1999-01-3598, 1999.
[88] Liu, H. R., White, P. J., “Oxidative stability of soybean oils with altered fatty acid compositions,” Journal of the American Oil Chemists’ Society, Vol. 69, Iss. 6, pp. 528-532, 1992.
[89] Liu, H. R., White, P. J., “High-temperature stability of soybean oils with altered fatty acid compositions, ” Journal of the American Oil Chemists’ Society, Vol. 69, Iss. 6, pp. 533-537 , 1992.
[90] Lin, C.Y., Wang, K.H., “ Diesel engine performance and emission characteristics using three-phase emulsions as fuel,” Fuel, Vol. 83, Iss. 4-5, pp. 537-545, 2004.
[91] Usta, N., “An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester, ” Energy Conversion and Management, Vol. 46, Iss. 15-16, pp. 2373-2386, 2005.
[92] 林修安,生質柴油煉製及其引擎性能與腐蝕特性研究,國立臺灣海洋大學航運技術研究所碩士論文,基隆,2002。
[93] Çetinkaya, M., Ulusoy, Y., Tekìn, Y., Karaosmanoğlu, F., “ Engine and winter road test performances of used cooking oil originated biodiesel,” Energy Conversion and Management, Vol. 46, Iss. 7-8, pp. 1279-1291, 2005.
[94] Puhan, S., Vedaraman, N., Ram, B.V.B., Sankarnarayanan, G., Jeychandran, K., “Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characterstics,” Biomass and Bioenergy , Vol. 28, Iss. 1, pp. 87-93, 2005.
[95] 吳烈宗,鐵鎳鉻合金及鉻鉬鋼披覆氯化鈉之熱腐蝕,國立台灣科技大學機械工程學系碩士論文,台北,1999。
[96] Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill Companies, Singapore, 1988.
[97] Gary, L.B., Kenneth, W.R., Combustion Engineering, McGraw -Hill Companies, Singapore, pp. 66-127, 1998.
[98] Lin, C.Y., Wang, K.H., “ Effects of diesel engine speed and water content on emission characteristics of three-phase emulsions , ” Journal of Environmental Science and Health, Part A, Vol. 39, Iss. 5, pp. 1345-1359, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊