跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王禹鈞
研究生(外文):Yu-Chun Wang
論文名稱:利用再結合二元樹去實作LIBOR市場模型
論文名稱(外文):Using Recombining Binomial Trees To Implement LIBOR Market Models
指導教授:呂育道呂育道引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:21
中文關鍵詞:LIBOR市場模型BGMHSS再結合二元樹利率上限選擇權
外文關鍵詞:LIBOR market model (LMM)BGMHSSrecombining treecaplet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文是在描述利用Ho, Stapleton and Subrahmanyam在1995年提出的再結合二元樹模型,去實作LIBOR市場模型。再結合的二元樹模型提供了一個快速而且精確的方法去評價一些利率衍生性金融商品,甚至是路徑相依的商品。
The thesis is concerned with the implementation of the LIBOR market model, using the Ho, Stapleton and Subrahmanyam(1995) model, a recombining tree model. The recombining tree model provides a fast and accurate approach for the valuation of path{ dependent interest rate derivatives.
1 Introduction 2
2 The LIBOR Market Model 4
2.1 De‾nition of the LIBOR Market Model . . . . . . . . . . . . . . . . . 5
2.2 Implementation of the LIBOR Market Model . . . . . . . . . . . . . . 6
3 Methodology 7
3.1 The One-Factor HSS Model . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Application in LIBOR Market Model . . . . . . . . . . . . . . . . . . 11
4 The Pricing of Interest Rate Derivatives 14
5 Conclusions 18
[1] Andersen, L. (2000) A Simple Approach to the Pricing of Bermudan Swaptions in the Multifactor LIBOR Market Model. Journal of Computational Finance, 3, 5-32.
[2] Brace, A., D. Gatarek, and M. Musiela. (1997) The Market Model of Interest Rate Dynamics. Mathematical Finance, 7, 127-155.
[3] Derrick,S., D. Stapleton and R. Stapleton. (2005) The Libor Market Model: A Recombining Binomial Tree Methodology.
[4] Heath, D., R.A. Jarrow, and A. Morton. (1992) Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation. Econometrica, 60, 1, January, 77-105.
[5] Ho, T.S., R.C. Stapleton, and M.G. Subrahmanyam. (1995)
Multivariate Binomial Approximations for Asset Prices with Non-Stationary Variance and Covariance Characteristics. Review of Financial Studies, 8, 1125-1152.
[6] Hull, J. (2006) Options, Futures and Other Derivatives, 6th Edition. City: Prentice-Hull.
[7] Hull, J., and A. White. (2000) Forward Rate Volatilities, Swap Rate Volatilities and the Implementation of the Libor Market Model. University of Toronto.
[8] Lyuu, Y. (2002) Financial Engineering and Computation, City: Cambridge University Press.
[9] Pliska, S. (1997) Introduction to Mathematical Finance: Discrete Time Models. Oxford: Blackwell.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top