跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃士晏
研究生(外文):Shr-Yan Huang
論文名稱:多重生物指標最佳線性組合的嵌入估計法
論文名稱(外文):Imputation Estimation Method for the Optimal Linear Composition of Multiple Biomarkers
指導教授:江金倉江金倉引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:32
中文關鍵詞:接受器操作特性曲線一致性廣義線性模型
外文關鍵詞:AUCconsistencygeneralized linear modelinverse probability weightingimputationmarkersoptimal linear composition scoreROCselection probabilitysurvival data.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
針對多重生物指標在時間相關之ROC曲線分析,研究興趣通常在尋找合適之多重生物指標函
數以增進預測未來存活狀態的準確度。藉由對存活機率所建立之廣義線性模型,我們可導出
最佳生物指標函數為一線性組合函數。在不完整倖存資料結構下,我們利用嵌入條件期望值的方法
估計最佳線性組合中的係數。在此,我們推導所提出參數,$R!O!C_{t}$及$A!U!C_{t}$估計式之一致性。
更進一步,藉助模擬檢視估計式之有限樣本性質,並應用所提出之估計方法在心血管疾病的資料上
來改善預測心血管疾病死亡狀態及非限定因素死亡狀態的準確度。
In the time-dependent receiver operating characteristic (ROC) curve
analysis with several baseline markers, research interest focuses on
seeking an appropriate composition score of these potential markers
to improve the performance of individual markers in early prediction
of vital status. Under the validity of a generalized linear model
for the vital status at each time point within the study period, an
optimal linear composition score is shown to have a best ROC curve
among all functions of the markers. Based on censored survival data,
the inverse probability weighting approach was considered to
estimate the time-varying coefficients in the previous paper.
Without making assumption on the relationship between censoring time
and markers, we propose an imputation estimation method. The
consistency of the parameter estimators and the estimators of ROC
curve and area under ROC curve (AUC) at each time point is also
established in this article. However, the inverse probability
weighting approach will introduce a bias when the selection
probability is incorrectly specified in the estimating equations.
The performance of both estimation procedures are examined through a
class of numerical studies. Applying these methods to an angiography
cohort, our estimation procedures are shown to be useful in
predicting the vital outcomes.
Table of Contents
Table of Contents ii
List of Tables iv
Acknowledgements vi
Abstract vii
摘要viii
1 Introduction 1
2 Optimal Composition Score and Estimation 3
2.1 Model and Optimal Linear Combination Score . . . . . . . . . . . . . 3
2.1.1 Estimation of Time-Varying Coefficients . . . . . . . . . . . . 4
2.1.2 Inverse Probability Weighting Method . . . . . . . . . . . . . 4
2.1.3 Imputation Estimation Method . . . . . . . . . . . . . . . . . 5
2.2 Estimation of Time-Dependent ROC Curves and AUC . . . . . . . . 7
3 Asymptotic Properties 9
3.1 Consistency of bθt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Consistency of dAUCt . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Monte Carlo Simulations 13
4.1 First Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Second Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Application to an Angiography Cohort 25
6 Discussion 30
Bibliography 31
Bibliography
[1] Buckley, J. and James, I. (1979). Linear regression with censored data.
Biometrika. 66, 429-436.
[2] Dodd, L. E. and Pepe, M. S. (2003). Semiparametric regression for the area under
the receiver operating characteristic curve. Journal of the American Statistical
Association. 98, 409-417.
[3] Durrett, R. (2005). Probability: Theory and examples. Third edition. Duxbury.
[4] Foutz, R. V. (1977). On the unique consistent solution to the likelihood equations.
Journal of the American Statistical Association. 72, 147-148.
[5] Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC curves
for censored survival data and a diagnostic marker. Biometrics. 54, 124-135.
[6] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution.
Annals of Mathematical Statistics. 19, 293-325.
[7] Lee, K. W. J., Hill, J. S., Walley, K. R., and Frohlich, J. J. (2006). Relative
value of multiple plasma biomarkers as risk factors for coronary artery disease
and death in an angiography cohort. Canadian Medical Association Journal.
174, 461-466.
[8] McIntosh, M. W. and Pepe, M. S. (2002). Combining several screening tests:
Optimality of the risk score. Biometrics. 58, 657-664.
[9] Zheng, Y., Cai, T., and Feng, Z. (2006). Application of the time-dependent ROC
curves for prognostic accuracy with multiple biomarkers. Biometrics. 62, 279-
287.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top