(34.228.41.66) 您好!臺灣時間:2018/12/12 19:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:尤詩妮
研究生(外文):Shih-Ni Yu
論文名稱:ㄧ、台灣垃圾焚化廠周邊對新生兒不良出生結果之相關性探討二、Cotinine、基因多型性與嬰兒成長及神經行為發展
論文名稱(外文):1. Adverse Birth Outcomes near Municipal Waste Incinerators in Taiwan2. Cotinine, Genetic Polymorphism, and Infant Growth and Neurobehavioral Development
指導教授:陳保中陳保中引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:112
中文關鍵詞:出生結果早產低出生體重性別比戴奧辛焚化爐抽菸環境二手菸cotinine神經行為發展出生體重頭圍胸圍身長懷孕週數中文版神經行為評估量表嬰幼兒綜合發展測驗
外文關鍵詞:very pretermpreterm deliveryvery low birth weightlow birth weightsmall for gestational agesex ratiodioxinsincineratorsmokingenvironmental tobacco smoke (ETS)cotininebirth outcomesneurobehavioral developmentbirth weighthead circumferencechest circumferencelengthgestational ageneonatal neurobehavioral examination in Chinese version (NNE-C)infant/toddler home observation for measurement of the environment inventory (IT-HOME)comprehensive developmental inventory for infants and toddlers (CDIIT)polymerase chain reaction (PCR)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:599
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
ㄧ、台灣垃圾焚化廠周邊對新生兒不良出生結果之相關性探討
由於國際間對於焚化廠煙道排放物質對於生殖健康效應的研究,至今尚未有一致的結論,故本研究的目的在探討廢棄物焚化廠周邊居民中,母親在懷孕過程暴露於焚化廠煙道排放物質(例如戴奧辛),對於其懷孕結果低出生體重、早產、胎兒生長遲滯(SGA,Small for gestational age)、嬰兒性別是否有關聯。研究地區的選取是根據90年「台灣地區焚化爐排放戴奧辛之健康風險評估研究」之結果,收集五座焚化廠完工運轉後歷次檢測之煙道戴奧辛濃度,以及焚化廠附近之氣象與地形資料,以工業污染源複合模式第三版(ISC3)進行大氣擴散與沉降之模擬。模擬的結果以地理資訊系統(GIS)界定出影響的行政區域範圍,接著將影響的行政區域範圍去連結內政部新生兒出生登記檔,收集每座焚化廠開始運作年份至2003年該期間新生兒出生的資料,進行統計分析。本研究結果並無法證明母親於懷孕期間暴露焚化廠煙道排放物質和新生兒不良出生結果有相關。

二、Cotinine、基因多型性與嬰兒成長及神經行為發展
近年來愈多的人們強調吸菸與暴露二手菸對於女性健康之危害,尤其是懷孕婦女所產生之危害可能影響其下一代,例如低出生體重。然而,在孕婦吸菸或暴露二手菸對於嬰兒與兒童神經行為發展的研究有限。此外,目前的研究都著重在吸菸與二手菸對出生結果的影響,但在環境暴露與基因的交互作用對兒童神經行為發展的影響仍然尚未清楚。
本研究藉由生物檢體及問卷所收集的資料,探討母親懷孕期間體內cotinine濃度及胎兒臍帶血中cotinine濃度之相關性,並且評估cotinine濃度對新生兒出生結果與胎兒的神經行為發展之影響,並於出生後二到五天、出生後六個月時對嬰兒進行神經行為和認知及動作發展的評估,以觀察cotinine濃度對於新生兒神經行為動作的相關性。另外,探討環境暴露與基因間對於嬰兒與兒童神經行為發展的貢獻程度。
本研究對象為2004年4月到2005年1月參與台北出生世代研究之孕婦及其嬰兒,總計328對。暴露的評估將透過收集孕婦生產時之血液及嬰兒之臍帶血,利用高效能液相層析儀連結串聯的質譜儀 (LC/MS/MS)進行cotinine濃度分析。吸菸、二手菸暴露資料及其他干擾因子則透過產後三天內進行問卷調查,嬰兒之出生結果將由病例得知,出生後二至五天以中文版神經行為評估量表由專業人員進行新生兒行為評估,內容包括肌力與動作型態、原始反射與意識反應。於嬰兒六個月大時,直接使用國際功能分類系統模式進行嬰幼兒綜合發展測驗,並請家長或主要照顧者填寫家庭環境觀察評估量表。干擾因子包括:母親年齡、種族、懷孕週數、胎次、喝酒與社經地位等。以ANOVA, MANOVA, 邏輯式迴歸模式進行cotinine濃度與新生兒成長發育及神經行為發展檢定。基因多型性方面以phaseⅡ的代謝基因為研究重點,探討GSTT1, GSTM1, GSTP1等基因。GSTT1, GSTM1基因利用polymerase chain reaction (PCR)方法,而GSTP1基因使用 PCR- restriction fragment length polymorphism (RFLP)方法,分析此三個基因的基因多型性。
結果發現懷孕時期母親吸菸或暴露二手菸,其體內cotinine濃度較高則會明顯增加不良的出生結果且具有劑量效應的關係,不良出生結果包括出生體重較低、懷孕週數較短、身長較短、頭圍較短。另外,在嬰兒神經行為發展方面,發現GSTT1, GSTM1, GSTP1等代謝基因與cotinine濃度之間的交互作用可能會與嬰兒神經行為發展有關係。
Thesis 1. Adverse Birth Outcomes near Municipal Waste Incinerators in Taiwan
Nowadays, the adverse influence of municipal waste incinerators on human health is both suspected and feared. Relevant studies are ongoing, especially in Taiwan, with its high densities of population and waste incinerators. Because there have been inconsistent conclusions on the reproductive health effects of waste incinerator emissions, we tried to investigate that the relationship between the exposure to waste incinerators and pregnancy outcomes such as preterm delivery, low birth weight, small for gestational age, and infant gender. Study areas were based on the research results of “ Health Risk Assessment on Incinerator-Emitted Dioxins in Taiwan”. The industrial source complex short-term model was used to determine the dioxins impact areas. A geographic information system was then used to plot the simulated results. All birth data would be linked from the birth registration database to do statistical analysis. We did not find any relationships between exposure to waste incinerators and adverse birth outcomes.

Thesis 2. Cotinine, Genetic Polymorphism, and Infant Growth and Neurobehavioral Development
More and more people emphasize that the women health effects of smoking and environmental tobacco smoke (ETS) exposure in recent years, especially the harm on pregnant women may affect their fetal, such as low birth weight (LBW). However, there are few studies about the association between smoking or ETS exposure among pregnant women and neurobehavioral development of their fetal. At present, associations between birth outcomes and smoking or ETS exposure have been investigated in many studies, however exposures to environmental and genetic factors in the etiology of adverse neurobehavioral development for infants are still not clear.
We analyzed cotinine concentrations from maternal blood and umbilical cord blood, and evaluated the association among cotinine level, fetal growth, and neonate neurobehavioral development. In addition, we tried to understand the contribution from environmental exposure and genetic modification for the neurobehavioral development of neonate and children.
Our study subjects were pregnant women and their neonates from the pilot of Taipei Birth Panel Study (TBPS) between April 2004 and January 2005, and a total of 328 maternal-newborn pairs. The cotinine concentrations of maternal bloods and umbilical cord bloods were analyzed with high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC/MS/MS). For all neonates, neonatal neurobehavioral performance at two to five days after delivery is measured by Neonatal Neurobehavioral Examination in Chinese version (NNE-C). During six months of age, Infant/Toddler HOME of Home Observation for Measurement of the Environment Inventory (IT-HOME) and Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT) were used to measure the performance of cognition and movement of infants. GSTT1, GSTM1and GSTP1 genetic polymorphisms were analyzed by polymerase chain reaction (PCR) method.
Maternal smoking or ETS exposure during pregnancy negatively affects birth outcomes obviously, including birth weight, gestational age, birth length, and head circumference, and negatively affects neurobehavioral development, especially in motor performance. In addition, adverse effects of maternal smoking or ETS exposure on neurobehavioral development could be modified by metabolic genotypes, possibly by GSTT1, GSTM1, and GSTP1. There was a suggestive increase in risk for the newborn or maternal carrying more variant genotypes of GST1, GSTM1, and GSTP1.
Theses 1. Adverse Birth Outcomes near Municipal Waste Incinerators in Taiwan
摘要 3
Abstract 4
Contents 5
List of Table 6
List of Figure 7
Introduction 8
Materials and Method 10
Study areas 10
Study population and Data Source 11
Definitions of adverse birth outcomes 12
Statistical analysis 12
Results 14
Discussion 16
Conclusions 22
Reference 29

Theses 2. Cotinine, Genetic Polymorphism, and Infant Growth and Neurobehavioral Development
摘要 33
Abstract 35
Contents 37
List of Table 38
List of Figure 40
Introduction 41
Adverse reproductive outcomes of smoking or ETS exposure 41
Smoking or ETS and newborn neurobehavioral development 41
Biomarkers of smoking or ETS exposure and measurements 42
Genetic polymorphisms 43
Glutathion-S-transferases (GSTs) 44
Neonatal neurobehavioral examination 45
Comprehensive developmental inventory for infants and toddlers (CDIIT) 46
Home observation for measurement of the environment (HOME) inventory 46
Materials and Methods 48
Study design 48
Medical records and questionnaire data 48
Infant neurobehavioral development 49
Cotinine concentration analysis 49
Genetic polymorphisms analysis 50
Statistical analysis 52
Results 54
Discussion 56
Conclusions 60
Reference 103
Appendix - Inform Consent 110
Thesis 1. Adverse Birth Outcomes near Municipal Waste Incinerators in Taiwan

1. IARC. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC Mon Eval Carcinog Risks Hum 1997;69:33-343.
2. Grassman JA, Masten SA, Walker NJ, Lucier GW. Animal models of human response to dioxins. Environ Health Perspect 1998;106:761-75.
3. Schecter A, Kassis I, Papke O. Partitioning of dioxins, dibenzofurans, and coplanar PCBS in blood, milk, adipose tissue, placenta and cord blood from five American women. Chemosphere 1998;37:1817-23.
4. Eskenazi B, Mocarelli P, Warner M, Chee WY, Gerthoux PM, Samuels S, et al. Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect 2003;111:947-53.
5. Revich B, Aksel E, Ushakova T, Ivanova I, Zhuchenko N, Klyuev N, et al. Dioxin exposure and public health in Chapaevsk, Russia. Chemosphere 2001;43:951-66.
6. Moshammer H, Neuberger M. Sex ratio in the children of the Austrian chloracne cohort. Lancet 2000;356:1271-2.
7. Schnorr TM, Lawson CC, Whelan EA, Dankovic DA, Deddens JA, Piacitelli LA, et al. Spontaneous abortion, sex ratio, and paternal occupational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect 2001;109:1127-32.
8. Yoshimura T, Kaneko S, Hayabuchi H. Sex ratio in offspring of those affected by dioxin and dioxin-like compounds: the Yusho, Seveso, and Yucheng incidents. Occup Environ Med 2001;58:540-1.
9. Ryan JJ, Amirova Z, Carrier G. Sex ratios of children of Russian pesticide producers exposed to dioxin. Environ Health Perspect 2002;110:A699-701.
10. Lai YL. Health Risk Assessment on Incinerator-Emitted Dioxins in Taiwan. National Taiwan University College of Public Health, 2001.
11. USEPA. Human health and ecological risk assessment support to the development of technical standards for emissions from combustion units burning hazardous wastes: background document. 1999:EPA/68/w6/0053.
12. USEPA. User''s Guide for the Industrial Source Complex (ISC3) Dispersion Models, Vol. I - User Instructions and Vol. II - Description of Model Algorithms. United States Environmental Protection Agency. Office of Air Quality Planning and Standards, September, EPA-454/B-95-003a,b., 1995.
13. Hsieh W, Wu H, Jeng S, Liao H, Su Y, Lin S, et al. Nationwide Singleton Birth Weight Percentiles by Gestational Age in Taiwan, 1998-2002. Acta Paediatr Tw 2006;47:25-33.
14. Courtney KD. Mouse teratology studies with chlorodibenzo-p-dioxins. Bull Environ Contam Toxicol 1976;16:674-81.
15. Allen JR, Barsotti DA, Lambrecht LK, Van Miller JP. Reproductive effects of halogenated aromatic hydrocarbons on nonhuman primates. Ann N Y Acad Sci 1979;320:419-25.
16. Murray FJ, Smith FA, Nitschke KD, Humiston CG, Kociba RJ, Schwetz BA. Three-generation reproduction study of rats given 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the diet. Toxicol Appl Pharmacol 1979;50:241-52.
17. Nau H, Bass R, Neubert D. Transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via placenta and milk, and postnatal toxicity in the mouse. Arch Toxicol 1986;59:36-40.
18. Umbreit TH, Hesse EJ, Gallo MA. Reproductive toxicity in female mice of dioxin-contaminated soils from a 2,4,5-trichlorophenoxyacetic acid manufacturing site. Arch Environ Contam Toxicol 1987;16:461-6.
19. Bjerke DL, Sommer RJ, Moore RW, Peterson RE. Effects of in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on responsiveness of the male rat reproductive system to testosterone stimulation in adulthood. Toxicol Appl Pharmacol 1994;127:250-7.
20. Eskenazi B, Kimmel G. Workshop on perinatal exposure to dioxin-like compounds. II. Reproductive effects. Environ Health Perspect 1995;103:143-5.
21. Mastroiacovo P, Spagnolo A, Marni E, Meazza L, Bertollini R, Segni G, et al. Birth defects in the Seveso area after TCDD contamination. JAMA 1988;259:1668-72.
22. Mocarelli P, Brambilla P, Gerthoux PM, Patterson DG J, Needham LL. Change in sex ratio with exposure to dioxin. Lancet 1996;348:409.
23. Mocarelli P, Gerthoux PM, Ferrari E, Patterson DG J, Kieszak SM, Brambilla P, et al. Paternal concentrations of dioxin and sex ratio of offspring. Lancet 2000;355:1858-63.
24. Lin CM, Li CY, Mao IF. Ambient dioxin exposure to incinerators inassociation with adverse birth outcomes. Taiwan J Public Health 2002;21:197-206.
25. Tango T, Fujita T, Tanihata T, Minowa M, Doi Y, Kato N, et al. Risk of adverse reproductive outcomes associated with proximity to municipal solid waste incinerators with high dioxin emission levels in Japan. J Epidemiol 2004;14:83-93.
26. Fries GF, Paustenbach DJ. Evaluation of potential transmission of 2,3,7,8-tetrachlorodibenzo-p-dioxin-contaminated incinerator emissions to humans via foods. J Toxicol Environ Health 1990;29:1-43.
27. Eschenroeder A, Lorber M. An evaluation of EPA''s ISCST-version 3 model part1. Air dispersion of dioxins. Organohalogen Compounds 1999;41:547-52.
28. Lorber M, Eschenroeder A, Robinson R. Testing the USA EPA''s ISCST-Version 3 model on dioxins: a comparison of predicted and observed air and soil concentrations. Atmospheric Environment 2000;34:3995-4010.
29. Dejin-Karlsson E, Ostergren PO. Psychosocial factors, lifestyle, and fetal growth: the added value of both pre- and post-natal assessments. Eur J Public Health 2003;13:210-7.
30. Andres RL, Day MC. Perinatal complications associated with maternal tobacco use. Semin Neonatol 2000;5:231-41.
31. Lindbohm ML, Sallmen M, Taskinen H. Effects of exposure to environmental tobacco smoke on reproductive health. Scand J Work Environ Health 2002;28:84-96.
32. Fortier I, Marcoux S, Brisson J. Passive smoking during pregnancy and the risk of delivering a small-for-gestational-age infant. Am J Epidemiol 1994;139:294-301.
33. Windham GC, Hopkins B, Fenster L, Swan SH. Prenatal active or passive tobacco smoke exposure and the risk of preterm delivery or low birth weight. Epidemiology 2000;11:427-33.
34. Chen PC, Doyle PE, Pain L, Wang JD. Parental socioeconomic status and low birthweight, preterm delivery, and small for gestational age in Taiwan. Chin J Public Health 1999;18:105-115.
35. Wen CP, Levy DT, Cheng TY, Hsu CC, Tsai SP. Smoking behaviour in Taiwan, 2001. Tob Control 2005;14:i51-5.

Theses 2. Cotinine, Genetic Polymorphism, and Infant Growth and Neurobehavioral Development
1. Suzuki K, Minei LJ, Johnson EE. Effect of nicotine upon uterine blood flow in the pregnant rhesus monkey. Am J Obstet Gynecol 1980;136:1009-13.
2. Andres RL, Day MC. Perinatal complications associated with maternal tobacco use. Semin Neonatol 2000;5:231-41.
3. Lindbohm ML, Sallmen M, Taskinen H. Effects of exposure to environmental tobacco smoke on reproductive health. Scand J Work Environ Health 2002;28:84-96.
4. Windham GC, Hopkins B, Fenster L, Swan SH. Prenatal active or passive tobacco smoke exposure and the risk of preterm delivery or low birth weight. Epidemiology 2000;11:427-33.
5. Fortier I, Marcoux S, Brisson J. Passive smoking during pregnancy and the risk of delivering a small-for-gestational-age infant. Am J Epidemiol 1994;139:294-301.
6. Slotkin TA. Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Ther 1998;285:931-45.
7. Chiriboga CA. Fetal alcohol and drug effects. Neurologist 2003;9:267-79.
8. Law KL, Stroud LR, LaGasse LL, Niaura R, Liu J, Lester BM. Smoking during pregnancy and newborn neurobehavior. Pediatrics 2003;111:1318-23.
9. Godding V, Bonnier C, Fiasse L, Michel M, Longueville E, Lebecque P, et al. Does in utero exposure to heavy maternal smoking induce nicotine withdrawal symptoms in neonates? Pediatr Res 2004;55:645-51.
10. Benowitz NL, Jacob P, 3rd. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther 1994;56:483-93.
11. Benowitz NL, Jacob P, 3rd. Trans-3''-hydroxycotinine: disposition kinetics, effects and plasma levels during cigarette smoking. Br J Clin Pharmacol 2001;51:53-9.
12. Benowitz NL. Biomarkers of environmental tobacco smoke exposure. Environ Health Perspect 1999;107:349-55.
13. Bjercke RJ, Cook G, Rychlik N, Gjika HB, Van Vunakis H, Langone JJ. Stereospecific monoclonal antibodies to nicotine and cotinine and their use in enzyme-linked immunosorbent assays. J Immunol Methods 1986;90:203-13.
14. Jaakkola MS, Ma J, Yang G, Chin MF, Benowitz NL, Ceraso M, et al. Determinants of salivary cotinine concentrations in Chinese male smokers. Prev Med 2003;36:282-90.
15. Pascual JA, Diaz D, Segura J, Garcia-Algar O, Vall O, Zuccaro P, et al. A simple and reliable method for the determination of nicotine and cotinine in teeth by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2003;17:2853-5.
16. Cognard E, Staub C. Determination of nicotine and its major metabolite cotinine in plasma or serum by gas chromatography-mass spectrometry using ion-trap detection. Clin Chem Lab Med 2003;41:1599-607.
17. Page-Sharp M, Hale TW, Hackett LP, Kristensen JH, Ilett KF. Measurement of nicotine and cotinine in human milk by high-performance liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003;796:173-80.
18. Moyer TP, Charlson JR, Enger RJ, Dale LC, Ebbert JO, Schroeder DR, et al. Simultaneous analysis of nicotine, nicotine metabolites, and tobacco alkaloids in serum or urine by tandem mass spectrometry, with clinically relevant metabolic profiles. Clin Chem 2002;48:1460-71.
19. Bentley MC, Abrar M, Kelk M, Cook J, Phillips K. Validation of an assay for the determination of cotinine and 3-hydroxycotinine in human saliva using automated solid-phase extraction and liquid chromatography with tandem mass spectrometric detection. J Chromatogr B Biomed Sci Appl 1999;723:185-94.
20. Hukkanen J, Jacob P, 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev 2005;57:79-115.
21. Cashman JR, Zhang J. Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation. Drug Metab Dispos 2002;30:1043-52.
22. Wiener D, Fang JL, Dossett N, Lazarus P. Correlation between UDP-glucuronosyltransferase genotypes and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone glucuronidation phenotype in human liver microsomes. Cancer Res 2004;64:1190-6.
23. Villeneuve L, Girard H, Fortier LC, Gagne JF, Guillemette C. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 2003;307:117-28.
24. Eaton DL, Bammler TK. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci 1999;49:156-64.
25. McIlwain CC, Townsend DM, Tew KD. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 2006;25:1639-48.
26. Ghobadloo SM, Yaghmaei B, Bakayev V, Goudarzi H, Noorinayer B, Rad FH, et al. GSTP1, GSTM1, and GSTT1 genetic polymorphisms in patients with cryptogenic liver cirrhosis. J Gastrointest Surg 2004;8:423-7.
27. Tamer L, Ercan B, Camsari A, Yildirim H, Cicek D, Sucu N, et al. Glutathione S-transferase gene polymorphism as a susceptibility factor in smoking-related coronary artery disease. Basic Res Cardiol 2004;99:223-9.
28. Parl FF. Glutathione S-transferase genotypes and cancer risk. Cancer Lett 2005;221:123-9.
29. Tamer L, Ates NA, Ates C, Ercan B, Elipek T, Yildirim H, et al. Glutathione S-transferase M1, T1 and P1 genetic polymorphisms, cigarette smoking and gastric cancer risk. Cell Biochem Funct 2005;23:267-72.
30. Kim WJ, Kim H, Kim CH, Lee MS, Oh BR, Lee HM, et al. GSTT1-null genotype is a protective factor against bladder cancer. Urology 2002;60:913-8.
31. Landi S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res 2000;463:247-83.
32. Seidegard J, Ekstrom G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect 1997;105:791-9.
33. Pal A, Hu X, Zimniak P, Singh SV. Catalytic efficiencies of allelic variants of human glutathione S-transferase Pi in the glutathione conjugation of alpha, beta-unsaturated aldehydes. Cancer Lett 2000;154:39-43.
34. Nelson HH, Wiencke JK, Christiani DC, Cheng TJ, Zuo ZF, Schwartz BS, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis 1995;16:1243-5.
35. Wang J, Deng Y, Cheng J, Ding J, Tokudome S. GST genetic polymorphisms and lung adenocarcinoma susceptibility in a Chinese population. Cancer Lett 2003;201:185-93.
36. Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 1998;19:275-80.
37. Gilliland FD, Li YF, Dubeau L, Berhane K, Avol E, McConnell R, et al. Effects of glutathione S-transferase M1, maternal smoking during pregnancy, and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med 2002;166:457-63.
38. Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, et al. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA 2002;287:195-202.
39. Nukui T, Day RD, Sims CS, Ness RB, Romkes M. Maternal/newborn GSTT1 null genotype contributes to risk of preterm, low birthweight infants. Pharmacogenetics 2004;14:569-76.
40. Hong YC, Lee KH, Son BK, Ha EH, Moon HS, Ha M. Effects of the GSTM1 and GSTT1 polymorphisms on the relationship between maternal exposure to environmental tobacco smoke and neonatal birth weight. J Occup Environ Med 2003;45:492-8.
41. Morgan AM, Koch V, Lee V, Aldag J. Neonatal neurobehavioral examination. A new instrument for quantitative analysis of neonatal neurological status. Phys Ther 1988;68:1352-8.
42. Jeng SF, Tsao CC, Chen LC, Teng RJ, Yau KI, Jan MH. Reliability of the Neonatal Neurobehavioral Examination--Chinese version. Early Hum Dev 1996;45:191-202.
43. Wang TM SC, Liao HF, Lin LY, Chou KS, Lin SH. The Standardization of The Comprehensive Developmental Inventory for Infants and Toddlers. Psychological Testing 1998;45:19-46.
44. Liao HF, Pan YL. Test-retest and inter-rater reliability for the Comprehensive Developmental Inventory for Infants and Toddlers diagnostic and screening tests. Early Hum Dev 2005;81:927-37.
45. Cadwell BM BR. HOME Inventory Administration Manual, 2003.
46. Bradley RH, Caldwell BM. Using the home inventory to assess the family environment. Pediatr Nurs 1988;14:97-102.
47. Kharrazi M, DeLorenze GN, Kaufman FL, Eskenazi B, Bernert JT, Jr., Graham S, et al. Environmental tobacco smoke and pregnancy outcome. Epidemiology 2004;15:660-70.
48. Donnenfeld AE, Pulkkinen A, Palomaki GE, Knight GJ, Haddow JE. Simultaneous fetal and maternal cotinine levels in pregnant women smokers. Am J Obstet Gynecol 1993;168:781-2.
49. Comstock KE, Sanderson BJ, Claflin G, Henner WD. GST1 gene deletion determined by polymerase chain reaction. Nucleic Acids Res 1990;18:3670.
50. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 1994;300:271-6.
51. Peacock JL, Cook DG, Carey IM, Jarvis MJ, Bryant AE, Anderson HR, et al. Maternal cotinine level during pregnancy and birthweight for gestational age. Int J Epidemiol 1998;27:647-56.
52. Bardy AH, Seppala T, Lillsunde P, Kataja JM, Koskela P, Pikkarainen J, et al. Objectively measured tobacco exposure during pregnancy: neonatal effects and relation to maternal smoking. Br J Obstet Gynaecol 1993;100:721-6.
53. Kaufman FL, Kharrazi M, Delorenze GN, Eskenazi B, Bernert JT. Estimation of environmental tobacco smoke exposure during pregnancy using a single question on household smokers versus serum cotinine. J Expo Anal Environ Epidemiol 2002;12:286-95.
54. DeLorenze GN, Kharrazi M, Kaufman FL, Eskenazi B, Bernert JT. Exposure to environmental tobacco smoke in pregnant women: the association between self-report and serum cotinine. Environ Res 2002;90:21-32.
55. Pichini S, Basagana XB, Pacifici R, Garcia O, Puig C, Vall O, et al. Cord serum cotinine as a biomarker of fetal exposure to cigarette smoke at the end of pregnancy. Environ Health Perspect 2000;108:1079-83.
56. Gilliland FD, Gauderman WJ, Vora H, Rappaport E, Dubeau L. Effects of glutathione-S-transferase M1, T1, and P1 on childhood lung function growth. Am J Respir Crit Care Med 2002;166:710-6.
57. Bayley N. Manual of Bayley Scales of Infant Development. 1969.
58. Liao HF, Wang TM, Yao G, Lee WT. Concurrent validity of the Comprehensive Developmental Inventory for Infants and Toddlers with the Bayley Scales of Infant Development-II in preterm infants. J Formos Med Assoc 2005;104:731-7.
59. Eskenazi B, Castorina R. Association of prenatal maternal or postnatal child environmental tobacco smoke exposure and neurodevelopmental and behavioral problems in children. Environ Health Perspect 1999;107:991-1000.
60. Pirkle JL, Flegal KM, Bernert JT, Brody DJ, Etzel RA, Maurer KR. Exposure of the US population to environmental tobacco smoke: the Third National Health and Nutrition Examination Survey, 1988 to 1991. JAMA 1996;275:1233-40.
61. Government Information Office, Taiwan. http://www.gio.gov.tw/info/taiwan-story/society/down/3-4.htm.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 母親懷孕期間二手菸暴露對其小孩神經行為發展的基因修飾作用
2. 1.探討出生前後二手菸暴露對嬰幼兒神經行為發展之影響2.探討中藥從業人員血中重金屬濃度和腎臟功能之關係
3. 臍帶血鉛、VDR-FokI多型性與兒童兩歲的神經發展
4. 一、出生前後二手菸暴露對兒童健康之影響;二、錳、MnSOD與嬰兒生長及神經行為發展
5. 父母親鉛暴露對於下一代出生情形的影響
6. 一、出生體重及懷孕週數別新生兒及嬰兒死亡率二、探討陶斯松暴露對胎兒成長及神經行為發展之影響
7. 空氣污染物與幼兒神經行為發展之相關性
8. 一、都市垃圾焚化爐是否和學童注意力缺乏/過動症有關?--三座焚化廠周邊地區十二所國小流行病學研究;二、汞、APOE4與嬰兒生長及神經行為--台北出生世代研究
9. 一、出生體重與懷孕週數常模二、重金屬對胎兒成長與神經發育的影響
10. (一)921地震與懷孕結果相關性之探討(二)台灣地區死產危險因子分析
11. 台灣地區焚化爐排放戴奧辛之健康風險評估研究
12. 學前粗大動作品質量表運用於發展遲緩兒童之信效度
13. 以結構方程模式評估出生前金屬暴露對嬰幼兒神經行為發展之影響
14. 學齡前極低出生體重早產孩童動作發展之初探
15. 一、探討本國籍與外籍母親之嬰幼兒哺餵母乳時間長短與神經行為發展的影響二、母親懷孕期就業狀況與懷孕期高血壓之相關性:台灣出生世代研究
 
系統版面圖檔 系統版面圖檔