(18.205.60.226) 您好!臺灣時間:2019/12/15 10:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:侯冠廷
研究生(外文):Kuan-Ting Hou
論文名稱:空氣清淨機測試方法評估
論文名稱(外文):Evaluation of Test Method of Indoor Air Cleaners
指導教授:陳志傑陳志傑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:58
中文關鍵詞:空氣清淨機室內空氣品質CADR
外文關鍵詞:Air cleanersIndoor air qualityCADR
相關次數:
  • 被引用被引用:13
  • 點閱點閱:1298
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
現在歐美廣泛使用的空氣清淨機效能測試方法:ANSI/AHAM AC-1-2006,為美國國家標準協會/美國家電製造商協會(ANSI/AHAM)於2006年所公佈並以CADR(Clean Air Delivery Rate,CADR)值做為空氣清淨機效能的評估指標。在本研究中,將對AC-1-2006現行方法中測試條件的合理性進行評估,考量不同的微粒產生條件以及不同大小及洩漏量的測試空間、微粒量測儀器其與空氣清淨機擺設之相對位置對於室內空氣清淨機的評估指標CADR值的影響。實驗結果將有助於建立一個更完備的空氣清淨機效能評估測試方法,並增加其評估結果的可信度,提供給消費者和製造商參考。

本實驗結果顯示,微粒在室內空間的衰減率與其粒徑大小有關,在0.3μm左右的微粒有最低的自然衰減率。在標準測試空間的環境下,改變微粒量測儀器及待測空氣清淨機之相對位置對衰減率量測並無影響。過高的微粒起始濃度會因膠結作用而低估CADR值,當起始濃度<105 #/cm3時膠結作用趨於不顯著。以小型測試空間是可行的,但需在系統洩漏造成影響前進行CADR計算。測試空間其洩漏量愈大時空間內微粒濃度愈早與外界達到平衡因而使得微粒的衰減曲線提早產生偏斜,若涵蓋到計算時間內會造成微粒衰減率的低估。所測試之空氣清淨機,當提升操作風量時CADR值增加,能量的消耗亦隨之增多。若考量單位能量消耗可得之CADR值則需考慮空氣清淨機之風扇設計。
Indoor air cleaners are commonly used as an adjunct to source control and ventilation. In ANSI/AHAM AC-1-2006 (Method for Measuring Performance of Portable Household Electric Room Air Cleaners), Clean Air Delivery Rate (CADR) is a measure of the appliance’s ability to reduce aerosol particles in the 0.10 to 11 μm size range. In the present study, the effects of test chamber size, aerosol size (distribution), aerosol number concentration, position and flow rate of aerosol spectrometer, and leak rate of the test chamber on the CADR measurements were investigated. Two types (ESP and filter) of commercially available indoor air cleaners were tested in a standard certification chamber, and a chamber only 1/8 of the volume. Polydisperse aerosol particles were generated using a constant output aerosol generator and an ultrasonic atomizer. Aerosol outputs from both generators were then neutralized by using a radioactive source (Kr-85) to neutralize the aerosol particle to the Boltzmann charge equilibrium. The main aerosol size-spectrometers were a Scanning Mobility Particle Sizer and an Aerodynamic Particle. The background decay rates were measured by using real time aerosol instruments and a Mini Infra-Red Analyzer (MIRAN) was used when SF6 was the test agent.

The results showed that CADR value is a function of aerosol size. The ESP- and filter-type air cleaners had significantly different characteristic CADR curves. In general, ESP air cleaner performed better in aerosol collection, air resistance, and power usage. The relative location and orientation of the air cleaner and aerosol spectrometer in the test chamber had almost no effect on the CADR measurements. The measured CADR values decreased with increasing aerosol number concentration apparently due to coagulation effect during the natural decay measurement. The coagulation effect became less significant if aerosol number concentration was lower than 1.0×105 #/cm3. Use of smaller test chamber is possible. However, only the data collected before infiltrated aerosols became significant should be used for calculating the CADR value. Room air cleaners with multi-level performance fan settings normally delivered higher CADR when operated under higher air cleaning mode setting, but not necessary the CADR/watt value, probably due to the difference in fan performance curve.
目錄 I
圖目錄 II
摘要 IV
Abstract V
一、 研究背景與目的 1
1.1研究背景 1
1.2研究目的 1
二、 文獻探討 3
2.1室內空氣污染物的來源與種類 3
2.2室內空氣污染物的控制 9
2.3空氣清淨機的種類 11
2.4現行空氣清淨機評估方法回顧 18
2.5 ANSI/AHAM AC-1-2006家用室內空氣清淨機評估方法簡述 20
三、 研究方法 22
3.1實驗系統架構 22
3.2實驗儀器及材料 22
3.3實驗方法 24
四、 實驗結果與討論 25
4.1 待測空氣清淨機不同風量之CADR 25
4.2 微粒採樣儀器其流量對微粒衰減的影響 25
4.3 測試空間內器材不同擺放位置的影響 25
4.4 起始濃度對CADR的影響 25
4.5 粒徑與微粒自然衰減率之關係 26
4.6 不同CMD的CADR量測 26
4.7 二種不同型式的空氣清淨機之測試比較 27
4.8 改變測試空間大小之CADR測試 27
4.9 測試空間內微粒數目衰減情況的模式模擬 28
4.10 測試空間不同洩漏程度對微粒衰減率的影響 30
五、 結論與建議 31
參考文獻 33
AHAM(2002). Method for Measuring Performance of Portable Household Electric Cord-Connected Room Air Cleaners. Standard AC-1-2002, Association of Home Appliance Manufacturers, Chicago.
AHAM(2006). Method for Measuring Performance of Portable Household Electric Room Air Cleaners. Standard AC-1-2006, Association of Home Appliance Manufacturers, Chicago.
Chao, Christopher Y.H., Wan, M.P. and Cheng, Eddie C.K.(2003). Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmospheric Environment 37: 4233–4241.
Cheng, Yung Sung, Lu,Jian Chun and Chen, Tuo Rong(1998). Efficiency of a Portable Indoor Air Cleaner in Removing Pollens and Fungal Spores. Aerosol Science and Technology 29: 92-101.
Fanger, P. Ole(2000). Indoor Air Quality in the 21st Century:Search for Excellence. Indoor Air, Jun2000, Vol. 10 Issue 2, p68.
Fisk, W.J., Faulkner, D., Palonen, J., and Seppanen,O.(2002). Performance
and costs of particle air filtration technologies. Indoor Air 12:223–234.
He, Congrong, Morawska, Lidia and Gilbert Dale(2005). Particle deposition rates in residential houses. Atmospheric Environment 39: 3891–3899.
Hinds, WC.(1982). Aerosol Technology. New York; John Wiley and Sons, Inc.
164-186.
Jamriska, M. and Morawska, L.(2003). Quantitative Assessment of the Effect of Surface Deposition and Coagulation on the Dynamics of Submicrometer Particles Indoors. Aerosol Science and Technology 37: 425–436.
Karin K. Foarde , Eric A. Myers, James T. Hanley, David S. Ensor, and Peter F.Roessler(1999). Methodology to Perform Clean Air Delivery Rate Type Determinations with Microbiological Aerosols. Aerosol Science and Technology 30: 235–245.
Niu, J.L., Tung, T.C.W., Burnett, J.(2001). Quantification of dust removal and
ozone emission of ionizer air-cleaners by chamber testing. Journal of
Electrostatics 51-52: 20-24.
Offermann FJ, Sextro, RG, and FiskWJ, et al.(1984). Control of Respirable Particles and Radon Progeny with Portable Air Cleaners. Berkeley, Calif.:Lawrence Berkeley Laboratory(LBL-16659), Feb 1984
Shaughnessy, R. J. and Sextro, R. G. (2006). What Is an Effective Portable Air Cleaning Device? A Review. Journal of Occupational and Environmental Hygiene 3: 169–181.
Thatcher,T.L., A.C.Lai, R.Moreno-Jackson, R.G.Sextro, and W.W.Nazaroff (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ., 36: 1811–1819.
US EPA.(1990). Residential air cleaning devices: a summary of available information. Office of Air and Radiation (OAR).
Wallace, Lance A., Emmerich, Steven J. and Cynthia Howard-Reed(2004). Effect
of central fans and in-duct filters on deposition rates of ultrafine and fine
particles in an occupied townhouse. Atmospheric Environment 38: 405–413.
Ward, M., Siegel, J.A. and Corsi, R.L.(2005). The effectiveness of stand alone air
cleaners for shelter-in-place. Indoor Air 15: 127–134.
William W. Nazaroff (2004). Indoor Particle Dynamics. University of California
Postprints 2004: 79.
Wong, Nyuk Hien and Huang, Bernard (2004). Comparative study of the indoor
air quality of naturally ventilated and air-conditioned bedrooms of residential
buildings in Singapore. Building and Environment 39:1115 – 1123.

黃盛修(2001)小型靜電集塵器之過濾及負載特性之研究, 國立台灣大學公共衛生學院職業醫學與工業衛生研究所.
中國國家標準CNS(1981). 空氣清潔機, 編號7619.
中國國家標準CNS(1981). 空氣清潔機檢驗法, 編號7620.
日本工業規格JIS(1995).空氣清淨機, 編號C9615.
日本電機工業會規格標準(1995). 編號C1467
王秋森,陳時欣,2002,氣懸膠技術學,新文京開發出版有限公司.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔