跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張文信
研究生(外文):Wen-Hsin Chang
論文名稱:電漿浸沒式氮離子植入法用於鎳鈦根管器械之研究
論文名稱(外文):Plasma Immersion Ion Implantation of Nitrogen on Nickel-Titanium Endodontic Instruments
指導教授:林俊彬林俊彬引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:73
中文關鍵詞:鎳鈦根管銼針電漿浸沒式離子植入切削效率表面硬度疲勞斷裂表面處理
外文關鍵詞:NiTi endodontic instrumentPlasma Immersion Ion Implantationcutting efficiencysurface hardnesscyclic fatiguesurface treatment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎳鈦根管治療銼針經過十餘年的使用與改進,已經廣泛且成功的用於根管治療。然而,不良之切削效率將造成根管修形時間的延長,間接增加銼針斷裂機會,不但限制了器械之使用,鎳鈦根管器械若斷裂更經常導致醫病關係緊張甚至醫療糾紛。因此,增加器械之切削效率,降低根管治療器械在根管內之時間,可減少醫療失誤之發生。本實驗之目的在分析與探討電漿浸沒式離子植入法(Plasma Immersion Ion Implantation, PIII)對於鎳鈦根管治療器械之抗疲勞斷裂性及切削效率之關係。疲勞斷裂實驗使用Quantec® 鎳鈦銼針45枝,分成三組,分別以100% N2,50% N2,做PIII處理,以及外加一組未處理之控制組。之後以ISO 3630-1之標準測試,採用之曲率半徑7.5 mm,曲率角度為60度,進行疲勞斷裂性實驗。疲勞斷裂實驗結果顯示,經過PIII處理之鎳鈦銼針並不會減損抗疲勞斷裂性。切削效率前導實驗依據Dr. Haikel之概念,以銼針同時做線性與旋轉切削,修磨壓克力板,之後測量壓克力板喪失的重量,以評估銼針之切削效率;切削效率前導實驗結果顯示,鎳鈦銼針經過100% N2的PIII處理,切削效率比起控制組有顯著的增加;但以50% N2做PIII處理者,切削效率則無顯著差異;以掃描式電子顯微鏡觀察,經PIII處理之銼針表面呈現較少之缺損與細紋。之後切削效率實驗更改良Dr. Haikel之缺點,採用ASTM之標準磨耗測試加以改良與組裝,建立牙科根管治療銼針之切削效率評估模組。實驗樣本使用ProTaper® 鎳鈦銼針48枝,分成三組,分別以PIII處理一小時、兩小時,及一組未做處理之控制組。奈米壓痕測試結果顯示,PIII處理過後的兩組,120奈米深度內硬度明顯增加,硬度最高可增加1.8倍,模數也明顯增加;化學能譜分析結果顯示,PIII處理過後表面有明確之氮元素植入,氮元素植入之深度,一小時組與兩小時組分別可達10.55 nm 和10.70 nm。切削效率實驗結果顯示,有無PIII處理之切削效率並無差異。分析自行研發之切削效率評估模組的表現,可發現實驗過程穩定,實驗數據變異極小,可知實驗模組不會因線性與旋轉運動而產生切削結果之干擾,具有高度穩定度並值得信賴。
結論: PIII為有效之氮離子植入法。經過ISO 3630-1疲勞斷裂標準測試證實,PIII不會減損銼針之抗疲勞斷裂性。PIII後之Quantec®銼針切削效率明顯增加,ProTaper®切削效率則無顯著差異。經過化學能譜分析得知,PIII能確實在鎳鈦根管治療器械表面植入氮元素。經過奈米壓痕測試證實,PIII可增加表面硬度。而自行研發、設計組裝之根管治療銼針切削效率評估模組,具有穩定之測試數據,是可信賴之切削效率評估平台。
The purpose of this study was to investigate the effects of Plasma Immersion Ion Implantation (PIII) surface treatment on cyclic fatigue and cutting efficiency of Ni-Ti instruments. A total of 45 Quantec® NiTi instruments were divided into three groups for PIII treatment: two groups were subjected to 100% nitrogen, 50% nitrogen which was diluted with argon ion individually, and the other group was used as a control group. Cyclic Fatigue test was performed by following ISO 3630-1 specification. Pilot test of cutting efficiency of NiTi files was performed by cutting the acrylic plates then weighed the loss of the plates, which modified from the concept of Dr. Haikel. Each file was observed with scanning electron microscope (SEM). The results indicated cyclic fatigue resistance was not changed after PIII treatment. The group received PIII treatment with 100% nitrogen had a great improvement on cutting efficiency, but there was no significant difference between the groups accepted PIII with 50% nitrogen and control group. SEM observations were consistent with the above results. A total of 48 Quantec® NiTi instruments were divided into three groups for the main study of cutting efficiency test: two groups were subjected PIII treatment of nitrogen for one-hour, for two-hour, and the other group without treating was used as a control group. Surface hardness and modulus were measurement with Nano-indenter. The changes of surface element were analyzed with Electron Spectroscopy for Chemical Analysis (ESCA). Cutting efficiency test was performed by an innovative experimental device, which was modified from ASTM standard. The results indicated surface hardness was significant increased to a maximum 1.8 times after PIII treatment. Nitrogen was confirmed with ESCA, in depth of 10.55 nm of one-hour group and of 10.70 nm in two-hour group. But there was no significant difference among three groups on cutting efficiency.
In conclusions, PIII technique was confirmed to be a promising new surface treatment technique for NiTi instruments. There was no adverse effect on cyclic fatigue of NiTi endodontic instruments after PIII treatment. Nitrogen was confirmed to be implanted into NiTi instrument by PIII treatment. Surface hardness was also significant increased. Cutting efficiency was significant improved after PIII treatment on Quantec® files, but no difference on ProTaper® subjects.
中文摘要 i
Abstract iii
目錄 v
圖次 viii
第一章 前言 1
第二章 文獻回顧 3
2.1鎳鈦合金之重要性 3
2.1.1歷史發展與基本性質 3
2.1.2 NiTi alloy 與不鏽剛物理性質之比較 5
2.1.3醫學上之應用 7
2.1.4牙科之應用 8
2.2鎳鈦根管治療器械面臨之隱憂 9
2.2.1過度使用導致器械斷裂 9
2.2.2切削效率之低落 10
2.3電漿浸沒式離子植入法 12
2.3.1 原理介紹 12
2.3.2 PIII於鎳鈦器械之優勢 13
第三章 動機與目的 14
3.1 研究動機 14
3.2 研究目的 15
第四章 材料與方法 16
4.1電漿浸沒式離子植入與疲勞斷裂實驗 16
4.1.1主要研究設備 16
4.1.2 實驗材料 16
4.1.3電漿浸沒式離子植入流程 17
4.1.4疲勞斷裂實驗 18
4.1.5切削效率實驗:前導性實驗 19
4.1.6掃描式電子顯微鏡觀察 22
4.2電漿浸沒式離子植入與切削效率實驗 22
4.2.1主要研究設備 22
4.2.2 實驗材料 23
4.2.3電漿浸沒式離子植入流程 24
4.2.4奈米壓痕表面硬度分析 25
4.2.5化學能譜分析 (ESCA) 分析 26
4.2.6切削效率實驗 26
第五章 結果 29
5.1電漿浸沒式氮離子植入對疲勞斷裂之影響 29
5.1.1疲勞斷裂實驗 29
5.1.2切削效率實驗:前導性實驗 29
5.1.3 SEM觀察 30
5.2電漿浸沒式氮離子植入對切削效率之影響 30
5.2.1表面巨觀觀察 30
5.2.2表面硬度分析 31
5.2.3 ESCA分析 32
5.2.4切削效率實驗 32
第六章 討論 33
6.1電漿浸沒式離子植入法 33
6.1.1國內電漿浸沒式離子植入製備能力-金工中心 33
6.1.2國內電漿浸沒式離子植入製備能力-桃園核能所 34
6.2 PIII對疲勞斷裂之影響 35
6.2.1疲勞斷裂實驗參數之選擇 35
6.2.2疲勞斷裂實驗結果討論 35
6.3 PIII對切削效率之影響 36
6.3.1 切削效率:前導性實驗 36
6.3.2 切削效率實驗 37
6.4 PIII對表面硬度之影響 39
6.4.1 鎳鈦基材硬度 39
6.4.2 表面硬度之改變 39
6.4.3 表面模數之改變 40
6.5 PIII對表面元素分佈之影響 40
第七章 結論 41
參考文獻 42

圖 次
圖一、客製化離子佈植機 47
圖二、TCM ENDO motor 47
圖三、Scanning electric microscope 48
圖四、疲勞斷裂實驗平台 48
圖五、切削效率實驗:前導性實驗平台示意圖 49
圖六、Quantec® NiTi rotary files 49
圖七、樣本各組依序排列 50
圖八、Pruett根管曲率角度定義圖 50
圖九a、不同的彎曲曲率半徑之搭配組件 51
圖九b、不同的彎曲曲率半徑與搭配之曲率角度 51
圖十、cyclic fatigue裝置局部示意圖 52
圖十一、彎曲曲率半徑 7.5 mm,搭配曲率角度60° 52
圖十二、Haikel提出的cutting efficiency 實驗模組設計 53
圖十三、萬用拉力測試機 53
圖十四、低速油冷鑽石鋸片,Low Speed Diamond Wheel Saw Model 650 54
圖十五、奈米壓痕測試機,Nano Indenter XP 54
圖十六、ASTM standard G65 55
圖十七、切削效率實驗平台局部圖 55
圖十八、ProTaper®根管治療銼針 56
圖十九、序列性拋光後 57
圖二十、SEM檢視確定平滑度 57
圖二十一、核能所自行掌握研發之離子佈植技術 58
圖二十二、切斷之銼針鑲嵌於壓克力載台 58
圖二十三a、奈米硬度測試機軟體操作介面 59
圖二十三b、奈米硬度測試機測試情形 59
圖二十四、成對之壓克力板之相對關係 60
圖二十五、疲勞斷裂實驗柱狀圖 61
圖二十六、切削效率實驗折線圖 62
圖二十七、疲勞斷裂細紋 63
圖二十八a、PIII處理前,250× 64
圖二十八b、PIII處理後,250× 64
圖二十九a、PIII處理前,2000× 65
圖二十九b、PIII處理後,2000× 65
圖三十、SEM顯示有許多的品質不良空洞 66
圖三十一、沿著機械紋路斷裂 67
圖三十二、PIII後gross observation 68
圖三十三、表面硬度折線圖 69
圖三十四、表面模數折線圖 69
圖三十五、ESCA,PIII,一小時 70
圖三十六、ESCA,PIII,兩小時 71
圖三十七、切削效率實驗柱狀圖 72
圖三十八a、PIII前未見轟擊損傷 73
圖三十八b、PIII後出現轟擊損傷 73
Alapati, Brantley, Nusstein, Daehn, Svec, Powers, et al. (2006). Vickers Hardness Investigation of Work-Hardening in Used NiTi Rotary Instruments. Journal of Endodontics 32(12):1191-1193.
Andreasen GF, Hilleman TB, Andreasen GF, Hilleman TB (1971). An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. Journal of the American Dental Association 82(6):1373-5.
Andreasen GF, Morrow RE, Andreasen GF, Morrow RE (1978). Laboratory and clinical analyses of nitinol wire. American Journal of Orthodontics 73(2):142-51.
Ankrum MT, Hartwell GR, Truitt JE (2004). K3 Endo, ProTaper, and ProFile systems: breakage and distortion in severely curved roots of molars. J Endod 30(4):234-7.
Arens FC, Hoen MM, Steiman HR, Dietz GC, Jr. (2003). Evaluation of single-use rotary nickel-titanium instruments. J Endod 29(10):664-6.
Bramipour D, Svec TA, White KW, Powers JM (2001). Wear resistance of cryogenically treated stainless steel files. J Endod 27(3):212-3.
Buehler WH, Gilfrich JV, RC W (1963). Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics 34(1475-7.
Chaves Craveiro de Melo M, Guiomar de Azevedo Bahia M, Lopes Buono VT (2002). Fatigue resistance of engine-driven rotary nickel-titanium endodontic instruments. J Endod 28(11):765-9.
Civjan S, Huget EF, DeSimon LB, Civjan S, Huget EF, DeSimon LB (1975). Potential applications of certain nickel-titanium (nitinol) alloys. Journal of Dental Research 54(1):89-96.
Duerig T, Pelton A, Stockel D (1999). An overview of nitinol medical applications. Materials Science and Engineering A 273-275(149-160.
Ensinger W (1998). Modification of mechanical and chemical surface properties of metals by plasma immersion ion implantation. Surface and Coatings Technology 100-101(341-352.
Glossen CR, Haller RH, Dove SB, del Rio CE (1995). A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod 21(3):146-51.
Haikel Y, Serfaty R, Lwin TT, Allemann C (1996). Measurement of the cutting efficiency of endodontic instruments: a new concept. J Endod 22(12):651-6.
Haikel Y, Serfaty R, Wilson P, Speisser JM, Allemann C (1998). Cutting efficiency of nickel-titanium endodontic instruments and the effect of sodium hypochlorite treatment. J Endod 24(11):736-9.
Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C (1999). Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 25(6):434-40.
Kuhn G, Jordan L (2002). Fatigue and mechanical properties of nickel-titanium endodontic instruments. J Endod 28(10):716-20.
Lee DH, Park B, Saxena A, Serene TP (1996). Enhanced surface hardness by boron implantation in Nitinol alloy. J Endod 22(10):543-6.
Li UM, Lee BS, Shih CT, Lan WH, Lin CP (2002). Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod 28(6):448-51.
Matthey J (2007a). Selected properties of NiTi.
Matthey J (2007b). Comparison of Properties of NiTi and Stainless Steel.
Parashos, Messer (2006a). Rotary NiTi Instrument Fracture and its Consequences. Journal of Endodontics 32(11):1031-1043.
Parashos P, Gordon I, Messer HH (2004a). Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod 30(10):722-5.
Parashos P, Messer HH, Parashos P, Messer HH (2004b). Questionnaire survey on the use of rotary nickel-titanium endodontic instruments by Australian dentists. International Endodontic Journal 37(4):249-59.
Parashos P, Messer HH (2006b). The diffusion of innovation in dentistry: A review using rotary nickel-titanium technology as an example. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 101(3):395-401.
Peters OA (2004). Current challenges and concepts in the preparation of root canal systems: a review. J Endod 30(8):559-67.
Poon RWY, Ho JPY, Liu X, Chung CY, Chu PK, Yeung KWK, et al. (2005). Formation of titanium nitride barrier layer in nickel-titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance. Thin Solid Films 488(1-2):20-25.
Pruett JP, Clement DJ, Carnes DL, Jr. (1997). Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 23(2):77-85.
Rapisarda E, Bonaccorso A, Tripi TR, Condorelli GG, Torrisi L (2001). Wear of nickel-titanium endodontic instruments evaluated by scanning electron microscopy: effect of ion implantation. J Endod 27(9):588-92.
Sattapan B, Nervo GJ, Palamara JE, Messer HH (2000a). Defects in rotary nickel-titanium files after clinical use. J Endod 26(3):161-5.
Sattapan B, Palamara JE, Messer HH (2000b). Torque during canal instrumentation using rotary nickel-titanium files. J Endod 26(3):156-60.
Schaaf P (2002). Laser nitriding of metals. Progress in Materials Science 47(1-161.
Schafer E (2002). Effect of physical vapor deposition on cutting efficiency of nickel-titanium files. J Endod 28(12):800-2.
Scholl M (1997). Abrasive wear of titanium nitride coatings. Wear 204-204:57-64.
Shen Y, Cheung GS, Bian Z, Peng B (2006). Comparison of defects in ProFile and ProTaper systems after clinical use. J Endod 32(1):61-5.
Spili P, Parashos P, Messer HH (2005). The impact of instrument fracture on outcome of endodontic treatment. J Endod 31(12):845-50.
Stenman E, Spangberg LS (1990a). Machining efficiency of endodontic files: a new methodology. J Endod 16(4):151-7.
Stenman E, Spangberg LS (1990b). Machining efficiency of Flex-R, K-Flex, Trio-Cut, and S Files. J Endod 16(12):575-9.
Stenman E, Spangberg LS (1990c). Machining efficiency of endodontic K files and Hedstrom files. J Endod 16(8):375-82.
Tan L, Crone WC (2002). Surface characterization of NiTi modified by plasma source ion implantation. Acta Materialia 50(18):4449-4460.
Tepel J, Schafer E (1997). Endodontic hand instruments:cutting eficiency, instrumentation of curved canal, bending and torsional properties. Endodontics and Dental Traumatology 13(201-210.
Thompson SA (2000). An overview of nickel-titanium alloys used in dentistry. International Endodontic Journal 33(4):297-310.
Torrisi L, Torrisi L (1996). Ion implantation and thermal nitridation of biocompatible titanium. Bio-Medical Materials & Engineering 6(5):379-88.
Tripi TR, Bonaccorso A, Rapisarda E, Tripi V, Condorelli GG, Marino R, et al. (2002). Depositions of nitrogen on NiTi instruments. J Endod 28(7):497-500.
Tripi TR, Bonaccorso A, Condorelli GG (2003). Fabrication of hard coatings on NiTi instruments. J Endod 29(2):132-4.
Ullmann CJ, Peters OA (2005). Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J Endod 31(3):183-6.
Walia HM, Brantley WA, Gerstein H (1988). An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod 14(7):346-51.
Ward JR, Parashos P, Messer HH (2003a). Evaluation of an ultrasonic technique to remove fractured rotary nickel-titanium endodontic instruments from root canals: clinical cases. J Endod 29(11):764-7.
Ward JR, Parashos P, Messer HH (2003b). Evaluation of an ultrasonic technique to remove fractured rotary nickel-titanium endodontic instruments from root canals: an experimental study. J Endod 29(11):756-63.
Yao JH, Schwartz SA, Beeson TJ (2006). Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 32(1):55-7.
Yguel-Henry S, Vannesson H, von Stebut J (1990). High precision, simulated cutting efficiency measurement of endodontic root canal instruments: influence of file configuration and lubrication. J Endod 16(9):418-22.
Yguel-Henry S, von Stebut J (1994). Cutting efficiency loss of root canal instruments due to bulk plastic deformation, surface damage, and wear. J Endod 20(8):367-72.
Yoneyama T, Doi H, Hamanaka H, Okamoto Y, Mogi M, Miura F, et al. (1992). Super-elasticity and thermal behavior of Ni-Ti alloy orthodontic arch wires. Dental Materials Journal 11(1):1-10.
Zhao NQ, Man HC, Cui ZD, Yang XJ (2006). Structure and wear properties of laser gas nitrided NiTi surface. Surface and Coatings Technology 200(16-17):4879-4884.
Zuolo ML, Imura N, Ferreira MO (1994). Endodontic retreatment of thermafil or lateral condensation obturations in post space prepared teeth. J Endod 20(1):9-12.
核能所 ( 2005). 行政院原子能委員會核能研究所首頁.
蔡錫鎐, editor (2001). 材料實驗(彩色板): 文京圖書有限公司.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top