(3.230.76.196) 您好!臺灣時間:2020/04/05 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:顏世榮
研究生(外文):Shish-jung yen
論文名稱:樟芝降三酸甘油脂之功能研究
論文名稱(外文):Study on the hypotriglyceridemic effect of Antrodia camphorata in rats with high-cholesterol diet
指導教授:梁有志
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學檢驗生物技術學研究所
學門:工程學門
學類:生醫工程學類
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:83
中文關鍵詞:樟芝膽固醇
外文關鍵詞:antrodia camphoratehypotriglyceridemic
相關次數:
  • 被引用被引用:15
  • 點閱點閱:1651
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:193
  • 收藏至我的研究室書目清單書目收藏:1
樟芝因具有其許多的經濟價值,而遭到濫採目前以經被政府列為保育類的植物,為了要獲得更多的樟芝來源,科學家們即著手研發許多培養樟芝的方法,包括了固態及液態發酵的培養方法。
過氧化體增殖活化的受體(PPARs)是一個轉錄因子,屬於nuclear receptor superfamily,當與其接合體(ligand)結合後,會進入細胞核,結合在具有PPRE (peroxisome proliferators response element)的基因啟動區。PPAR ligands已經被用於在周邊組織增加胰島素的敏感度,而用來當作降低血糖的藥物。在insulin resistant animal的模式下和第二型(non-insulin-dependent)糖尿病的病患,PPAR ligands的使用,可降低血糖,胰島素和三酸甘油脂的濃度。在本研究中,我們首先嘗試以cell-base的實驗方式,去研究樟芝是否具有降低血中脂質的活性,結果顯示,野生樟芝子實體的水粗萃取物,可增加PPAR?? transactivation activity。基於此結果我們利用動物模式的實驗,來觀察野生樟芝子實體及固培養樟芝,在餵食高膽固醇的SD老鼠的實驗下,兩者在降低血中脂質(hypolipidemic)的效能。結果顯示野生樟芝子實體可以有效地減低血漿的三酸甘油脂(triglyceride)和血糖的濃度,但是對於血漿的膽固醇並沒有影響。另一方面,結果也顯示固態培養樟芝,對於血漿的膽固醇及三酸甘油脂(triglyceride)的濃度是不會有影響。由實驗結果,我們認為野生樟芝子實體可能具有降三酸甘油脂的功能,並且優於固培養樟芝。
Abstract
Antrodia camphorata (A. camphorata) is a kind of fungus and parasite on the inner heartwood wall of Cinnamonum kanehirai in wilderness. It is a Taiwan-specific and known traditional Chinese medicine, and has been used to treatment of diarrhea, hypertension, itchy skin, and liver cancer. It also exhibits several biological activities such as antioxidative and hepatoprotective activities. To gain large amount of A. camphorata, several culture technologies have been developed, including solid-state culture and liquid-state fermantation. Peroxisome proliferators activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily, and PPAR?? subtype has been described as a hypoglycemic agent that increase insulin sensitivity in peripheral tissues, and resulted in reducing blood glucose, insulin and triglyceride levels in insulin resistant animal and in type-2 (non-insulin-dependent) diabetic patients. In this study, first we want to investigate the possibility of A. camphorata on the hypolipidemic activity by cell-base experiment. Second, we want to compare the hypolipidemic effect between solid-state culture and wild fruiting body of A. camphorate in animals. The results showed that water extracts of wild fruiting bodies were able to increase the PPAR?? transactivation activity by transfection of PPAR?? reporter plasmid. Base on the cell experiment, we have examined the hypolipidemic effect of solid-state culture and wild fruiting body of A. camphorata in SD rat fed with high cholesterol diet. The results showed that wild fruiting body was able to decrease the triglyceride and glucose levels, but could not affect the cholesterol level. On the other hand, solid-state culture of A. camphorate had no significant effect on the blood levels of triglyceride and cholesterol. These results suggest that wild fruiting body may exhibit a hypotriglyceridemic effect, and has more effect than solid-state culture of A . camphorate on the hypotriglyceridemic activity.
目錄
ABBREVIATIONS IV
第一章 ABSTRACT 1
第二章 中文摘要 2
第三章 緒 論 4
第一節 研究目的 4
第二節 高血脂暨動脈粥狀硬化. 6
一、 前言 6
二、 遺傳因子 12
三、 病理學分析 14
四、 正常的血管及內膜層 17
五、 內皮細胞損傷 18
六、 單核球的遷移(MONOCYTE MIGRATION) 21
七、 脂質浸透 23
八、 平滑肌細胞的增生 24
九、 脂質核心体的形成(LIPID CORE FORMATION) 26
十、 脂斑(PLAQUE)微血管化 28
第三節 PEROXISOME PROLIFERATORS ACTIVATED RECEPTORS (PPARS) 30
第四節 樟 芝(TAIWANOFUNGUS) 32
一,簡 介 32
二,樟芝的成分 35
三,樟芝生理機能性 35
四,樟芝的培養 37
第四章 實驗材料與方法 39
一,材料 39
二,樟芝粗萃取物的製備 39
三,PPAR TRANSACTIVATION ASSAY 40
四,實驗動物及飼養條件 40
五,血清脂肪參數測量 41
六,血清生化參數測量 42
七,統計學分析 42
第五章 實驗結果 43
一,樟芝粗萃取物對PPARΓ活性的影響 43
二,樟芝對大鼠体重的影響 44
三,樟芝對血脂參數的影響 44
四,樟芝對血中生化參數的影響 46
第六章 討論 48
第七章 實驗結果圖表 58
圖一 58
圖二 60
圖三 61
圖四 62
圖五 64
圖六 65
圖七 66
表一 67
表二 68
第八章 參考文獻 69
健康的守護神國寶樟芝 蘇慶華教授 著 愛克思文化事業出版
臨床化學 第三版 何敏夫 編著 合記圖書出版社
圖解心臟疾病學精要 李哲全 編譯 合記圖書出版社
Molecular Cell Biology, 5/e
Cellular and Molecular Immunology 5/e
Robbins and Cotran Pathologic Basis of Disease 7th edition.
Lange Pathophysiology of Disease 4th edition.
[1] R.A. Hegele, Candidate genes, small effects, and the prediction of atherosclerosis. Crit Rev Clin Lab Sci 34 (1997) 343-67.
[2] J.W. Knowles, and N. Maeda, Genetic modifiers of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 20 (2000) 2336-45.
[3] H.C. Stary, D.H. Blankenhorn, A.B. Chandler, S. Glagov, W. Insull, Jr., M. Richardson, M.E. Rosenfeld, S.A. Schaffer, C.J. Schwartz, W.D. Wagner, and et al., A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85 (1992) 391-405.
[4] J.A. Berliner, M. Navab, A.M. Fogelman, J.S. Frank, L.L. Demer, P.A. Edwards, A.D. Watson, and A.J. Lusis, Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91 (1995) 2488-96.
[5] M.R. Boisseau, Roles of mechanical blood forces in vascular diseases. A clinical overview. Clin Hemorheol Microcirc 33 (2005) 201-7.
[6] R.G. Gerrity, The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 103 (1981) 181-90.
[7] N.M. Aqel, R.Y. Ball, H. Waldmann, and M.J. Mitchinson, Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies. J Pathol 146 (1985) 197-204.
[8] R. Ross, The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362 (1993) 801-9.
[9] D.E. Vaughan, PAI-1 and atherothrombosis. J Thromb Haemost 3 (2005) 1879-83.
[10] P. Shashkin, B. Dragulev, and K. Ley, Macrophage differentiation to foam cells. Curr Pharm Des 11 (2005) 3061-72.
[11] R. Corti, R. Hutter, J.J. Badimon, and V. Fuster, Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 17 (2004) 35-44.
[12] U. Rauch, J.I. Osende, V. Fuster, J.J. Badimon, Z. Fayad, and J.H. Chesebro, Thrombus formation on atherosclerotic plaques: pathogenesis and clinical consequences. Ann Intern Med 134 (2001) 224-38.
[13] P.R. Moreno, K.R. Purushothaman, M. Sirol, A.P. Levy, and V. Fuster, Neovascularization in human atherosclerosis. Circulation 113 (2006) 2245-52.
[14] E.M. Conway, Angiogenesis: a link to thrombosis in athero-thrombotic disease. Pathophysiol Haemost Thromb 33 (2003) 241-8.
[15] M. Zang, Su, C.H., , Ganoderma camphoratum, a new taxon in genus Ganoderma from Taiwan, china. Acta Bot. Yunnanica 12 (1990) 395-396.
[16] L.R.a.T.-T.C. Sheng-Hua Wu, Antrodia camphorata ("niu-chang-chih"), new combination of a medicinal fungus in Taiwan Bot. Bull. Acad. Sin. : 38 (1997) 273-275.
[17] Y.C. Hseu, W.C. Chang, Y.T. Hseu, C.Y. Lee, Y.J. Yech, P.C. Chen, J.Y. Chen, and H.L. Yang, Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci 71 (2002) 469-82.
[18] H.C. HWA CHERNG, THREE NEW TRITERPENOIDS FROM ANTRODZA CZNNAMOMEA. Journal of Natural Products 58 (1995) 365-371.
[19] I.H. Cherng, D.-P. Wu, and H.-C. Chiang, Triterpenoids from Antrodia cinnamomea. Phytochemistry 41 (1996) 263-267.
[20] S.-W. Yang, Y.-C. Shen, and C.-H. Chen, Steroids and triterpenoids of Antodia cinnamomea--A fungus parasitic on Cinnamomum micranthum. Phytochemistry 41 (1996) 1389-1392.
[21] Y.C. Shen, C.J. Chou, Y.H. Wang, C.F. Chen, Y.C. Chou, and M.K. Lu, Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett 231 (2004) 137-43.
[22] G.J. Wang, H.W. Tseng, C.J. Chou, T.H. Tsai, C.T. Chen, and M.K. Lu, The vasorelaxation of Antrodia camphorata mycelia: involvement of endothelial Ca(2+)-NO-cGMP pathway. Life Sci 73 (2003) 2769-83.
[23] S.C. Jong, and J.M. Birmingham, Medicinal and therapeutic value of the shiitake mushroom. Adv Appl Microbiol 39 (1993) 153-84.
[24] Y.L. Hsu, Y.C. Kuo, P.L. Kuo, L.T. Ng, Y.H. Kuo, and C.C. Lin, Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 221 (2005) 77-89.
[25] T.Y. Song, and G.C. Yen, Antioxidant properties of Antrodia camphorata in submerged culture. J Agric Food Chem 50 (2002) 3322-7.
[26] Y.C. Shen, Y.H. Wang, Y.C. Chou, C.F. Chen, L.C. Lin, T.T. Chang, J.H. Tien, and C.J. Chou, Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Med 70 (2004) 310-4.
[27] N. Nakamura, A. Hirakawa, J.J. Gao, H. Kakuda, M. Shiro, Y. Komatsu, C.C. Sheu, and M. Hattori, Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod 67 (2004) 46-8.
[28] H.F. Han, N. Nakamura, F. Zuo, A. Hirakawa, T. Yokozawa, and M. Hattori, Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chem Pharm Bull (Tokyo) 54 (2006) 496-500.
[29] J.J. Cheng, C.J. Yang, C.H. Cheng, Y.T. Wang, N.K. Huang, and M.K. Lu, Characterization and functional study of Antrodia camphorata lipopolysaccharide. J Agric Food Chem 53 (2005) 469-74.
[30] J.C. Chen, F.M. Ho, C. Pei-Dawn Lee, C.P. Chen, K.C. Jeng, H.B. Hsu, S.T. Lee, W. Wen Tung, and W.W. Lin, Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521 (2005) 9-20.
[31] H.L. Yang, Y.C. Hseu, J.Y. Chen, Y.J. Yech, F.J. Lu, H.H. Wang, P.S. Lin, and B.C. Wang, Antrodia camphorata in submerged culture protects low density lipoproteins against oxidative modification. Am J Chin Med 34 (2006) 217-31.
[32] A.T. Borchers, J.S. Stern, R.M. Hackman, C.L. Keen, and M.E. Gershwin, Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 221 (1999) 281-93.
[33] J.M. McKenney, Pharmacotherapy of dyslipidemia. Cardiovasc Drugs Ther 15 (2001) 413-22.
[34] F.H. Epstein, and L.D. Ostrander, Jr., Detection of individual susceptibility toward coronary disease. Prog Cardiovasc Dis 13 (1971) 324-42.
[35] S.J. Mao, J.G. Patton, J.J. Badimon, B.A. Kottke, M.C. Alley, and A.D. Cardin, Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies. Clin Chem 29 (1983) 1890-7.
[36] S. Schmidtmann, M. Muller, R. von Baehr, and K. Precht, Changes of antioxidative homeostasis in patients on chronic haemodialysis. Nephrol Dial Transplant 6 Suppl 3 (1991) 71-4.
[37] A. Stiko-Rahm, B. Wiman, A. Hamsten, and J. Nilsson, Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 10 (1990) 1067-73.
[38] P. Eriksson, L. Nilsson, F. Karpe, and A. Hamsten, Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 18 (1998) 20-6.
[39] T. Lemberger, R. Saladin, M. Vazquez, F. Assimacopoulos, B. Staels, B. Desvergne, W. Wahli, and J. Auwerx, Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271 (1996) 1764-9.
[40] S. Green, PPAR: a mediator of peroxisome proliferator action. Mutat Res 333 (1995) 101-9.
[41] P. Gervois, I.P. Torra, J.C. Fruchart, and B. Staels, Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chem Lab Med 38 (2000) 3-11.
[42] K. Schoonjans, B. Staels, and J. Auwerx, The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302 (1996) 93-109.
[43] B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J.C. Fruchart, Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98 (1998) 2088-93.
[44] J.P. Monk, and P.A. Todd, Bezafibrate. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hyperlipidaemia. Drugs 33 (1987) 539-76.
[45] M.H. Moghadasian, G.B. Mancini, and J.J. Frohlich, Pharmacotherapy of hypercholesterolaemia: statins in clinical practice. Expert Opin Pharmacother 1 (2000) 683-95.
[46] J.L. Goldstein, and M.S. Brown, Progress in understanding the LDL receptor and HMG-CoA reductase, two membrane proteins that regulate the plasma cholesterol. J Lipid Res 25 (1984) 1450-61.
[47] K. Kariya, K. Nakamura, K. Nomoto, S. Matama, and K. Saigenji, Mimicking of superoxide dismutase activity by protein-bound polysaccharide of Coriolus versicolor QUEL, and oxidative stress relief for cancer patients. Mol Biother 4 (1992) 40-6.
[48] F. Liu, V.E. Ooi, and S.T. Chang, Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60 (1997) 763-71.
[49] Y. Gao, K. Li, S. Tang, and Y. Xiao, [Study on animal models for hyperlipidemia]. Wei Sheng Yan Jiu 31 (2002) 97-9.
[50] F. Karpe, P. Tornvall, T. Olivecrona, G. Steiner, L.A. Carlson, and A. Hamsten, Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 98 (1993) 33-49.
[51] I.K. Wang, S.Y. Lin-Shiau, P.C. Chen, and J.K. Lin, Hypotriglyceridemic effect of Anka (a fermented rice product of monascus sp.) in rats. J Agric Food Chem 48 (2000) 3183-9.
[52] P.E. DiCorleto, and G.M. Chisolm, 3rd, Participation of the endothelium in the development of the atherosclerotic plaque. Prog Lipid Res 25 (1986) 365-74.
[53] P. Phillips, J. Perez-Emmanuelli, H.D. Rosskothen, and C.J. Koester, Measurement of intraocular lens decentration and tilt in vivo. J Cataract Refract Surg 14 (1988) 129-35.
[54] S.H. Ko, S.W. Choi, S.K. Ye, B.L. Cho, H.S. Kim, and M.H. Chung, Comparison of the antioxidant activities of nine different fruits in human plasma. J Med Food 8 (2005) 41-6.
[55] D. Steinberg, Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272 (1997) 20963-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔