跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅裕懋
研究生(外文):Fu Yu-Mao
論文名稱:晶片型氣相層析管柱之靜相塗佈材料研究
論文名稱(外文):A Study of Stationary Phase Coating for MEMS μ-Gas Chromatographic Column
指導教授:呂家榮呂家榮引用關係
指導教授(外文):Lu Chia-Jung
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:93
中文關鍵詞:晶片型毛細管柱微小氣相層析儀靜相塗佈
外文關鍵詞:μ-columnμ-GCStationary Phase Coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討在微小氣相層析儀μ-GC中,晶片型毛細管柱的靜相塗佈材料研究,利用六向閥的控制自動注入混合氣體,以程式控制致冷片的升溫程序,並讀取、紀錄GC-FID訊號,探討靜相的分離效果。以傳統動態塗佈的方式塗佈高分子dimethyl polysiloxane (Rtx-1)、polyisobutylene(PIB)、奈米金粒子AuC8、奈米碳管、以及利用直接表面修飾(2-phenylethyl)trimethoxysilane(PETMS)形成單層分子膜作為微小毛細管的靜相,其中Rtx-1與PETMS兩種靜相分離效果較好,成功的利用1m長之晶片型管柱在3分鐘內分離10種混合有機氣體。由於PETMS上的苯環官能基具有很多的π電子雲,與極性分子之間具有較強的偶極-誘導偶極力(dipole-induced dipole interaction),其分離效果與非極性的Rtx-1有明顯的不同。在不同的溫度梯度下分析飽和直鏈烷類,升溫的速率越快會造成peak capacity下降。此外,以n-octane在不同線性流速下探討 Rtx-1與PETMS靜相材料的解析能力,利用兩種理論板高模型,Golay model和Spangler model,模擬理論板高與流速之間的關係曲線與實驗數據相互比較,在理想的流速下,以n-octane為樣品,在Rtx-1靜相中平均理論板數為4473/m;在PETMS單層分子膜靜相中平均理論板數為3795/m。
Our research is to study the stationary phase materials for MEMS fabricated column of a -GC. Dimethylpolysiloxane (Rtx-1) is dynamically coated on -column to form a finite thickness stationary phase. (2-phenylethyl)trimethoxysilane (PETMS) react directly with -column wall to form a monolayer stationary phase. We compare the resolution of two stationary phase materials, which chromatographically separate 10-mixture components within less then 3 minutes, and the performances are different. The non-polar compounds have greater resolution in Rtx-1 phase. On the other hand, the polar compounds retained better in PETMS phase. We also use different temperature programs to investigate the changes of the peak capacity using a series of n-alkanes. Under the different flow rate, we use air as carrier gas and n-octane as test compound to probe the height equivalent to a theoretical plate (HETP) using Golay and Spangler model to fit Van Deemter plot. It is found that Rtx-1 have 4473 theoretical plates per meter and PETMS have 3795 theoretical plates per meter at optimized flow velocity.
中文摘要...................................................i
英文摘要..................................................ii
目錄.....................................................iii
圖目錄.....................................................v
表目錄..................................................viii
第一章 緒論.................................................1
1-1 前言.................................................1
1-2 理論板高之理論........................................4
1-3 微機電系統應用於微小氣相層析儀.........................25
1-4 陽極接合............................................27
1-5 熱電偶(Thermocouple)................................28
1-6 致冷片原理...........................................30
1-7 兩相合成法...........................................32
第二章 實驗部分.............................................34
2-1 實驗藥品、材料與儀器設備...............................34
2-1-1 實驗藥品、材料..................................34
2-1-2 儀器設備.......................................36
2-2晶片型毛細管柱前處理....................................39
2-3晶片型毛細管柱靜相塗佈..................................39
2-3-1表面修飾PETMS單層分子膜靜相........................39
2-3-2 AuC8奈米金粒子之塗佈.............................40
2-3-3奈米碳管之塗佈....................................42
2-3-4高分子聚合物polyisobutylene (PIB)之塗佈...........42
2-3-5高分子聚合物dimethyl polysiloxane (Rtx-1)之塗佈...42
2-4 測量系統的架設........................................43
2-5 數據擷取系統..........................................45
2-6 熱電偶之讀取線路......................................48
第三章 結果與討論...........................................50
3-1毛細管內部表面之分析....................................50
3-2晶片型毛細管柱之流速分析................................52
3-2-1流量計之流速校正分析...............................52
3-2-2塗佈靜相前後壓力對於流速的分析......................54
3-3 塗佈靜相前後分離效果比較................................55
3-4不同靜相材料之分離效果比較...............................57
3-5 PETMS與Rtx-1之分離效果比較............................60
3-5-1 不同流速之分離效果比較............................60
3-5-2 混合氣體之分離效果比較............................64
3-5-3 溫度梯度控制之探討...............................66
3-5-4 飽和直鏈烷類之分離效果探討........................68
3-6 理論板高之探討........................................72
3-6-1 Rtx-1靜相之板高模型模擬 ..........................73
3-6-2 PETMS單層分子膜靜相之板高模型模擬..................80
第四章 結論.................................................86
參考文獻....................................................88
1.Terry S. C.; Jerman J. H.; Aangell J. B. IEEE Trans.
Electron. Dev. 1979, 26, 1880-1886.
2.Reston R. R.; Kolesar E. S. J. Microelectromechanical
Systems 1994, 3, 134-146.
3.Reston R. R.; Kolesar E. S. J. Microelectromechanical
Systems 1994, 3, 147-154.
4.Kolesar E. S.; Reston R. R. Surface and Coating
Technology 1994, 68. 679-685.
5.Kolesar E. S.; Reston R. R. IEEE Trans. Compon. Packag.
Manuf. Technol. 1998, 21, 324-328.
6.Eiceman G. A.; Torresdey J. G.; Overton E.; Carney K.;
Dorman F. Anal. Chem. 2002, 74, 2771-2780.
7.Tjerkstra R. W.; de Boer M.; Berenschot E.; Gardeniers J.
G. E.; van den Berg A.; Elwenspoek M. C. Electrochim.
Acta 1997, 42, 3399-3406.
8.de Boer M. J.; Tjerkstra R. W.; Berenschot J. W.; Jansen
H. V.; Burger G. J.; Gardeniers J. G. E.; Elwenspoek M.;
van den Berg A. J. Microelectromechanical Systems 2000,
9, 94-103.
9.Nam W. J.; Bae S.; Kalkan A. K.; Fonash S. J. J. Vac.
Sci. Technol. A. 2001, 19, 1229-1233.
10.Papautsky I.; Brazzle J.; Swerdlow H.; Frazier A. B. J.
Microelectromechanical Systems 1998, 7, 267-273.
11.Rasmussen A.; Gaitan M.; Locascio L. E.; Zaghloul M. E.;
J. Microelectromechanical Systems 2001, 10, 286-297.
12.Verpoorte E.; De Rooij N. F. Proc. IEEE 2003, 91, 930-
953.
13.Esashi M.; Ono T.; J. Phys. D: Appl. Phys. 2005, 38,
R223-R230.
14.Leonard C.; Grall A.; Sacks R. Anal. Chem. 1999, 71,
2123-2129.
15.Grall A.; Leonard C.; Sacks R. Anal. Chem. 2000, 72, 591-
598.
16.Smith H.; Zellers E. T.; Sacks R. Anal. Chem. 1999, 71,
1610-1616.
17.Grall A. J.; Zellers E. T.; Sacks R. Enviton. Sci.
Technol. 2001, 35, 163-169.
18.Whiting J.; Sacks R. Anal. Chem. 2002, 74, 246-252.
19.Gross G. M.; Nelson D. A.; Grate J. W.; Synovec R. E.
Anal. Chem. 2003, 75, 4558-4564.
20.Gross G. M.; Grate J. W.; Synovec R. E. J. Chromatogr.
A. 2004, 1029, 185-192.
21.Gross G. M.; Grate J. W.; Synovec R. E. J. Chromatogr.
A. 2004, 1060, 225-236.
22.Saito Y.; Tahara A.; Imaizumi M.; Takeichi T.; Wada H.;
Jinno K. Anal. Chem. 2003, 75, 5525-5531.
23.Hosoya K.; Hire N.; Yamamoto K.; Nishimure M.; Tanaka N.
Anal. Chem. 2006, 78, 5729-2735.
24.Lambertus G.; Elstro A.; Sensenig K.; Potkay J.; Agah
M.; Scheuering S.; Wise K.; Dorman F.; Sacks R. D. Anal.
Chem. 2004, 76, 2629-2637.
25.Reidy S.; Lambertus G.; Reece J.; Sacks R. Anal. Chem.
2006, 78, 2623-2630.
26.Lambertus G.; Sacks R. Anal. Chem. 2005, 77, 2078-2084.
27.Zampolli S.; Elmi I.; Sturmann J.; Nicoletti S.; Dori
L.; Cardinali G. C. Sens. Actuators B 2005, 105, 400-406.
28.Stadermann M.; McBrady A. D.; Dick B.; Reid V. R.; Noy
A.; Synovec R. E.; Backajin O. Anal. Chem. 2006, 78, 5639-
5644.
29.Agah M. J. Microelectromechanical Systems 2007, 16, 853-
860.
30.Potkay J. A.; J. Microelectromechanical Systems 2007,
16, 1071-1079.
31.http://www.chromatography-online.org/
32.Golay M. J. E.; “Gas Chromatography 1958,” D. H. Desty
Ed., Butterworths, London, 1958, pp 36-55
33.Golay M. J. E. Anal. Chem. 1968, 40, 382-384.
34.Gidding J. C.; Seager S. L.; Stucki L. R.; Stewart G. H.
Anal. Chem. 1960, 32, 867-870.
35.Gidding J. C. J. Chem. Phys. 1986, 49, 81-85.
36.Gaspar G.; Annino R.; Madjar C. V.; Guiochon G. Anal.
Chem. 1978, 50, 1512-1518.
37.Golay M. J. E. J. Chromatogr. 1981, 216, 1-8.
38.Gidding J. C.; Chang J. P.; Myers M. N.; Davis J. M.;
Caldwell K. D. J. Chromatogr. 1983, 255, 359-379.
39.Spangler G. E. Anal. Chem. 1998, 70, 4805-4816.
40.Agah M.; Potkay J. A.; Lambertus G.; Sacks R. D.; Wise
K. D. J. Microelectromechanical Systems 2005, 14, 1039-
1050.
41.Agah M.; Lambertus G.; Sacks R. D.; Wise K. D. J.
Microelectromechanical Systems 2006, 15, 1371-1378.
42.Spangler G. E. J. Microcolumn Sep. 2001, 13(7), 285-292.
43.Spangler G. E. Anal. Chem. 2006, 78, 5205-5207.
44.Bhushan A.; “ SYSTEM OPTIMIZATION FOR REALIZING A
MINIATURIZED GAS CHROMATOGRAPH SENSOR FOR RAPID CHEMICAL
ANALYSIS“, The Department of Mechanical Engineering,
2006.
45.Dutta D.; Leighton D. T. Anal. Chem. 2003, 75, 57-70.
46.Ahn H.; Brandani S. AlChE J. 2005, 50(7), 1980-1990.
47.Liang D.; Peng Q.; Michelson K.; Guan X.; Xing W.; Cheng
J. Lab Chip 2007, 7, 1062-1073.
48.Obrony M. C.; Zheng J.; Nichols J. M.; Lu C. J.;
Bergstrom P. L.; Manginell R. P.; Frye-Mason G. C.;
Zellers E. T.; 7th International Conference on
Miniaturized Chemical and Biochemical Analysis Systems,
2003, pp1243-1246.
49.Wallner J. M.; Kunt K. S.; Obanionwu H.; Oborny M. C.;
Bergstrom P. L.; Zellers E. T. Phys. Stat. Sol. 2007,
204, 1449-1453.
50.Lu C. J.; Zellers E. T. Anal. Chem. 2002, 127, 1061-1068.
51.Cai Q. Y.; Zellers E. T. Anal. Chem. 2002, 74, 3533-3539.
52.Lambertus G. R.; Fix C. S.; Reidy S. M.; Miller R. A.;
Wheeler D.; Nazarov E.; Sacks R. Anal. Chem. 2005, 77,
7563-7571.
53.Whiting J. J.; Lu C. J.; Zellers E. T.; Sacks R. D.
Anal. Chem. 2001, 73, 4668-1675.
54.Lu C. J.; Jin C. ; Zellers E. T. J. Environ. Monit.
2006, 8, 270-278.
55.Lu C. J.; Whiting J.; Sacks R. D.; Zellers E. T. Anal.
Chem. 2003, 75, 1400-1409.
56.Lu C. J.; Steinecker W. H.; Tian W. C.; Oborny M. C.;
Nichols J. M.; Agah M.; Potkay J. A.; Chan H. K. L.;
Driscoll J.; Sacks R. D.; Wise K. D.; Pang S. W.; Zellers
E. T. Lab Chip 2005, 5, 1123-1131.
57.劉丙寅, 游家瑋, 蔡宏營, 葉性銓, 丁嘉仁, 異質晶圓接合機制探討及
發展現況,微奈米機械與系統技術專輯, 2005, 269期 p5-p20.
58.http://emotors.ncku.edu.tw/motor_learn/e_news/040204/whos
.htm
59.http://www.lix.com.tw/Knowledge/Axiom.htm.
60.朱旭山, 熱電材料與元件之發展與應用, 工業材料雜誌220期 p93-
p103.
61.陳啟川, 劉君愷, 鄭憶湘, 微熱電致冷器之特性及發展.
62.Brust M.; Walker M.; Bethell D.; Schiffrin D.; Whyman R.
J. Chem. Soc. Chem. Commun. 1994, 7, 801.
63.Bellino M. G.; Calvo E. J.; ordillo G. Phys. Chem. Chem.
Phys. 2004, 6, 424-428.
64.Wang S.; Sato S.; Kimura K. Chem. Mater. 2003, 15, 2445-
2448.
65.John F.; Kiely C. J.; Bethell D.; Schiffrin D. Chem.
Mater. 1998, 10, 922-926.
66.蕭子健, 王智昱, 儲昭偉, 虛擬儀控程式設計 LabVIEW 7X, 高立圖
書, 2005.
67.Zamborini F. P.; Leopoid M. C.; Hick J. F.; Kulesza P.
J.; Malik M. A.; Murray R. W. J. Am. Chem. Soc. 2002,
124, 8958-8964.
68.Wuelfing W. P.; Zamborini F. P.; Templeton A. C.; Wen
X.; Toon H.; Mueeay R. W. Chem. Matter. 2001, 13, 87-95.
69.Liu S.; Zhu T.; Hu R.; Liu Z. Phys. Chem. Chem. Phys.
2002, 4, 6059-6062.
70.Grob K. J. Chromatogr. 1981, 207, 291-297.
71.http://www.lmnoeng.com/Flow/GasViscosity.htm
72.http://www.engineeringtoolbox.com/air-absolute-kinematic-
viscosity -d_601.html
73.Nelson G. O.; Gas mixtures : preparation and control,
LEWIS PUBLISHERS, Chelsea, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top