(18.207.134.98) 您好!臺灣時間:2019/10/24 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:汪國麟
論文名稱:樟芝菌絲體對大鼠肝腎汞傷害之影響
指導教授:陳伯中陳伯中引用關係
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:營養醫學研究所
學門:醫藥衛生學門
學類:營養學類
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:113
中文關鍵詞:二氯化汞氧化壓力樟芝菌絲體微量元素分佈抗氧化特性
外文關鍵詞:HgCl2Oxidative stressMycelia of Antrodia CamphorataDistribution of trace elementsAntioxidant properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:761
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
汞(mercury)為持久性生物累積污染物質之一,任何形式的汞都具有毒性,其在生物體內的累積,可能誘發氧化壓力(oxidative stress), 進而導致神經組織、心臟血管系統、肝臟及腎臟病變。另一方面,樟芝(學名Antrodia Camphorata)是台灣常用的草藥,相關文獻報導,樟芝含有多醣體(Polysaccharides)、多酚(polyphenols)、三萜類(Triterpenoids)及微量元素(trace elements)等多種活性成份,具有許多生理功能,如抗氧化能力,可對肝臟形成保護作用。因此,本論文旨在探討二氯化汞的生理傷害機轉,並比較補充樟芝菌絲體在試驗前後之氧化壓力、肝腎功能及器官含汞量等的變化。
以性成熟之SD雄性大鼠為實驗對象,在實驗第一部份:分別餵予含0、25 mg/kg bw及100 mg/kg bw樟芝菌絲體的飼料配方(C、LAC、HAC組),連續84天。監測(1)肝功能指標GPT、GOT; (2)腎功能指標BUN、creatinine; (3) 紅血球與肝、腎中含汞量的變化; (4)總膽固醇、三酸甘油酯; (5) 抗氧化酵素GSH、 GSHPx、catalase、SOD等的活性; (6) 抗氧化相關微量元素Se、Zn、Cu和Fe; (7)肝及腎中的脂肪過氧化產物(MDA)。結果發現:LAC和HAC組的肝、腎功能指數和血脂,相較於C組並無明顯的差異;微量元素分佈的變化,血漿中除了HAC組的Se,以及腎臟中LAC和HAC組的Zn和C組有明顯的差異外,其餘均無明顯變化;而抗氧化酵素中,LAC和HAC組血漿中GSH、GSH/GSSG、GSHPx與catalase,以及HAC組的SOD活性均明顯高於C組。另外而HAC組中肝臟的GSHPx與catalase活性以及腎臟中GSH含量,和C組比較均有顯著的差異。HAC組的汞蓄積明顯低於C組。三組間MDA值則無明顯的差異。
在實驗第二部份:將試驗動物分成三組包括 M 組(0 mg/kg bw樟芝菌絲體 + 20 μg HgCl2/ml的飲用水)、LAC+M 組 (25 mg/kg bw樟芝菌絲體 + 20 μg HgCl2/ml的飲用水)、HAC+M 組 (100 μg/kg bw樟芝菌絲體 + 20 μg HgCl2/ml的飲用水),連續84天。並監測與第一部份相同指標。結果顯示:(1) 汞在腎臟中的蓄積量顯著高於肝臟及紅血球; (2) M組肝(GPT)、腎(BUN、Cr) 功能指數、總膽固醇和三酸肝油酯均明顯高於C組,而LAC+M和HAC+M 組則明顯低於M組;(3) M組有明顯的脂肪過氧化現象,其原因和抗氧化酵素的活性與表現量受到不同程度的抑制,以及微量元素Se、Zn、Fe和Cu等的不平衡有關;(4) LAC+M 和HAC+M 組在脂肪過氧化、抗氧化酵素的活性和表現量以及微量元素的平衡上方面,和M組有明顯的差異;(5) LAC+M 和HAC+M 組在紅血球、肝臟及腎臟的累積方面,明顯的低於M組。
綜合以上的結果,得到以下的結論:HgCl2的氧化壓力會造成組織的傷害,而樟芝菌絲體可明顯降低氧化壓力,作用應與其抗氧化能力有關。
Mercury is a biological hazard which is widely used in industry, medicine, agriculture and other fields. Any form of mercury is toxic and it’s accumulation inside the body could possibly induce cellular damage. The toxic effects on human and animal systems are well documented by WHO. In literature, the damages contributed by mercury involve CNS, gastrointestinal tract, liver and kidney. One of the most important mechanisms of mercury on tissue damage is oxidant stress which would promote lipid peroxidation. Three pathways are contributed to the oxidant stress of mercury: (1)Being a transition metal, mercury acts as a catalyst in Fenton-type reaction, resulting in the formation of free radicals. Or indirectly, it can enhance iron-stimulated lipid peroxidation; (2)Mercury exhibits a significant affinity to sulfhydryl groups, which account for as much as 10% to 50% of the antioxidant capacity of plasma. It also inactivate the activity of SOD and catalase; (3)Mercury forms an insoluble complex with selenium, the mercury senenide, thus binding selenium in an inactive form that cannot serve as cofactor for glutathione peroxidase, an scavenger of H2O2 and lipid peroxides. Therefore, it is believed that an antioxidant should be one of the important components of effective treatment for mercury poisoning. Androdia camphorata is well known in Taiwan as a traditional Chinese medicine. Reports showed that Antrodia camphorata(AC) contains many kinds of bioactive materials, including polysaccharides, polyphenols, triterpenoids, adenosine, vitamins, minerals and sterols. All these components exhibit many physical benefits, for example, antioxidant properties, and contribute to liver protection. The aim of this article was to declare the mechanism of mercury-induced oxidative stress, and to compare the change of liver function, renal function, lipid profile, lipid peroxidation level and mercury content in tissues in HgCl2-exposed rats treated by mycelia of antrodia camphorate(MAC). Methods: Rats were divided into 6 groups, 3 groups of them being given distilled water and fed with foods containing no AC, low dose(25 mg/kg bw) MAC and high dose(100 mg/kg bw)MAC, respectively. The other 3 groups were given vehicle solution with HgCl2 (20μg/ml). Rats in these groups were also fed with the same foods containing no, low and high dose MAC, respectively, just like the other 3 groups. The total raising period was 84 days. After the rats were sacrificed, data were collected including GOT, GPT, BUN, creatinine, MDA, antioxidant enzymes (GSH, GSSG, GSHPx, SOD, catalase), minerals (Se, Zn, Cu and Fe) and finally, the mercury content in RBC, liver and kidney. The results revealed: (1)Mercury content was extraordinarily higher in kidney than in liver; (2) HgCl2 induced significant deleterious change of liver and renal function as well as cholesterol and TG. All these could be prevented by mycelia of Antrodia Camphorata; (3) Oxidative stress by HgCl2 is possibly generated via it’s ability to inactivate the activity of antioxidant enzymes and to disturb the distribution of minerals;(4) The oxidative stress in rats treated with MAC were significantly lower than M group, which was considered probably derived from it’s antioxidant properties; (5)The accumulation of mercury in RBC, liver and kidney was eliminated but the mechanism should be discussed furtherly in succeeding studies.
In conclusion: Mycelia of Antrodia Camphorata possess the ability to protect tissues againt oxidative stress caused by HgCl2, which is possibly from it’s antioxidant properties.
第一章 緒論 1
第二章 文獻回顧 4
第三章 材料與方法 16
一、 實驗方法 16
二、 實驗項目 18
三、 統計分析 31
第四章 結果 33
一、 樟芝菌絲體對大鼠之生理作用 33
二、 樟芝菌絲體在HgCl2曝露大鼠之生理作用 58
三、 實驗數據表 82
表二 肝功能腎功能、總膽固醇和三酸甘油酯數據表 83
表三 血漿抗氧化酵素、微量元素、TNF-α及紅血球汞聚積量數據表 84
表四 肝臟抗氧化酵素、微量元素、MDA及汞蓄積量數據表 85
表五 腎臟抗氧化酵素、微量元素、MDA及汞蓄積量數據表 86
第五章 討論 87
一、 樟芝菌絲體對汞造成的傷害下產生抗氧化效能之影響 87
二、 樟芝菌絲體對微量元素的抗氧化效能之影響 93
三、 樟芝菌絲體對於肝、腎功能與血脂的影響 98
四、 樟芝菌絲體對於紅血球、肝臟及腎臟中汞排除的影響 102
第六章 結論 102
參考文獻 103
附錄一 國鼎公司牛樟芝菌絲體膠囊簡介
參考文獻

林佳葉 (1992) 高鋁對血色素氧化酵素之基因表現的影響。輔仁大學食品營養學系碩士論文

陳蕙琳 (1996) 大蒜精油及其活性成分-二烯丙基硫化物、二烯丙基二硫化物對大白鼠肝癌形成、血脂質、血紅素 GSH 及 GSH 相關代齥酵素活性之影響。中山醫學院營養科學研究所碩士論文

趙克然 楊毅軍 曹道俊(2003) 氧自由基與臨床。合計圖書出版社

Afonne et al.(2000). Zinc protection of mercury-induced hepatic toxicity in mice. Biol Pharm Bull 23: 305-8

Agarwal R and Behari JR(2007). Role of Selenium in Mercury Intoxication in Mice. Industrial Health 45: 388-395

Aposhian MM, Maiorinoa RM, Xu Z, Aposhian HV(1996). Sodium 2,3-dimercapto- 1 -propanesulfonate (DMPS) treatment does not redistribute lead or mercury to the brain of rats. Toxicology 109: 49-55

Arthur JR and Boyne R (1985). Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle. Life Sciences 36: 1569-1575

Ashour et al.(1993). The mechanism of methyl mercury toxicity in isolated rat hepatocytes. Toxicol lett. 69:87-96

Axelrad DA, Bellinger DC, Ryan LM and Woodruff TJ(2007). Dose–Response Relationship of Prenatal Mercury Exposure and IQ: An Integrative Analysis of Epidemiologic Data. Environ Health Persp. 115(4): 609–615

Berglund M, Elinder CG, Järup L(2001). Humans Exposure Assessment. An Introduction. WHO.

Björkman L, Lundekvam BF, Laegreid T, Bertelsen B, Morild I, Lilleng P, Lind B, Palm B, and Vahter M(2007). Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health 6:30 ?

Brand˜ao R, Santos FW, Farina M, Zeni G, Bohrer D, Rocha JBT and Nogueira CW(2002). Antioxidants and metallothionein levels in mercury-treated mice. Cell Biol Toxicol. 22: 429–438.

Brandao R, Santos FW, Zeni G, Rocha JBT and Nogueira CW(2006). DMPS and N-acetylcysteine induced renal toxicity in mice exposed to mercury. BioMetals. 19:389–398

Brent RL and Weitzman M( 2004). The current state of knowledge about the effects, risks, and science of children’s environmental exposures. Pediatrics 113:1158–1166.

Brownawell AM, Berent S, Brent RL, Bruckner JV, Doull J and Gershwin EM(2005). The potential adverse health effects of dental amalgam. Toxicol Rev 24:1–10.

Burbure CD. et al.(2006). Renal and Neurologic Effects of Cadmium, Lead, Mercury, and Arsenic in Children: Evidence of Early Effects and Multiple Interactions at Environmental Exposure Levels. Environmental Health Perspectives. Kidney international 70: 2074-2084

Clarkson, TW(2002). The Three Modern Faces of Mercury. Environ Health Persp. Vol. 110, Supp 1:11-23.

Clarkson TW(2003). Three modern faces of mercury. Environ Health Perspect 110:11–23.

Clarkson TW and Magos L(2006). The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662.

Collins C and Saldana M(2007). Mercury exposure and its implications for visual health. Can J Ophthalmol. 42:660-2

Counter SA and Buchanan LH(2004). Mercury exposure in children:
A review. Toxicol Appl Pharmacol. 198:229–230.

Davidson PW, Myers GJ and Weiss B(2004). Mercury Exposure and Child Development Outcomes. Pediatrics 113:1023-1029

Dekhuijzen PNR( 2004). Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J. 23: 629–636

Diez S, Montuori P, Pagnno A and Samachiaro P(2007). Hair mercury levels in an urban population from southern Italy: Fish consumption as a determinant of exposure. Environ International. 34: 162-167

Feng WY, Wang M, Li B, Liu J and Chai Z(2004). Mercury and trace element distribution in organic tissues and regional brain of fetal rat after in utero and weaning exposure to low dose of inorganic mercury. Toxicity letters 152:223-234

Guallar E et al.(2002). Mercury, Fish Oils, and The Risk of Myocardial Infarction. N Engl J Med. 347:1747-1754

Garland M, Morris JS, Rosner BA(1993). Toenail trace element levels
as biomarkers: reproducibility over a 6-year period. Cancer Epidemiol
Biomarkers Prev. 2:493-7.

Goyer RA(1995). Nutrition and metal toxicity. Am J Clin Nutr. 60(suppl):646s-50s

Haley BE(2005). Mercury toxicity: Genetic susceptibility and synergistic effects. Medical Verias. 2: 535-542

Hossn E, Mokhtar G, El-Awady M, Ali I, Morsy M, Dawood A(2001) Environmental exposure of the pediatric age groups in Cairo City and its suburbs to cadmium pollution. Sci Total Environ. 273: 135–46

Hsiao G, Shen MY, Lin KH, Lan MH, Wu LY, Chou DS, Lin CH, Su CH and Sheu JR(2003). Antioxidative and Hepatoprotective Effects of Antrodia camphorata Extract. J Agric Food Chem. 51: 3302-3308

Järup L.(2003) Hazards of heavy metal contamination. British Medical Bulletin. 68: 167–182

Jedrychowski W et al.(2007). Fish consumption in pregnance, cord blood mercury level and cognitive and psychomotor development of infants followed over the frist three years of life. Krakow epide. study Environ Intern 33:1057-1062

Johansson LH and Borg LAH (1988). A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem. 174: 331-336

Juresa D, Blanu M, Kostial K(2005). Simultaneous administration of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. Toxicology Letters. 155: 97–102
Khordi-Mood M, Sarraf-Shirazi A, Balali-Mood M(2001). Urinary mercury excretion following amalgam filling in children. Clin Toxicol. 39:701–705.
König A et al. (2005). A Quantitative Analysis of Fish Consumption and Coronary Heart Disease Mortality. Am J Prev Med. 29:335–346

Levy M, Schwartz S, Dijak M, Weber J-P, Tardif R(2004). Childhood urine mercury excretion: dental amalgam and fish consumption as exposure factors. Environ Res 94:283–290.

Lin WC, Kuo SC, Lin WL, Fang HL, Wang TC(2006). Filtrate of fermented mycelia from Antrodia camphorata reduces liver fi brosis induced by carbon tetrachloride in rats. World J Gastroenterol. 12: 2369-2374

Lu ZM et al.(2006) Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats. Jr. of Ethnopharmacol. 110: 160-164

Lynn S, Yu CL and Jan KY(1999). Vicinal-Thiol-Containing Molecules Enhance but Mono-Thiol-Containing Molecules Reduce Nickel-Induced DNA Strand Breaks. Toxicol and Applied Pharmacol. 160: 198-205

Magos L(1997). Physiology and toxicology of mercury. Met Ions Biol Syst
34:321-70.

Mahaffey KR, Clickner RP and Jeffries RA(2007). Methylmercury and omega-3 fatty acids: Co-occurrence of dietary sources with emphasis on fish and shellfish. Environ Res. 107: 20-29

Patrick L(2002). Mercury Toxicity and Antioxidants: Part I: Role of Glutathione and alpha-Lipoic Acid in the Treatment of Mercury Toxicity. Alterna Med Review 7:456-71

Richard MJ, Portal B, Meo J, Coudray C, Hadjian A and Favier A (1992). Malondialdehyde kit evaluated for determining plasma and lipoprotein fractins that react with thiobarbituric acid. Clin Chem. 38: 704-709

Rissanen T, Voutilainen S, Nyyssonen K, Lakka TA, Salonen JT(2000). Fish
oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid,
and the risk of acute coronary events: The Kuopio Ischaemic Heart Disease
Risk Factor Study. Circulation 102:2677-9.

Rudolfs K. Zalups(2000). Molecular Interactions with Mercury in the Kidney. Pharmacol Reviews 52: 113-144

Saillsten G, Thoren J, Barregard L, Schiutz A and Skarping G(1996). Long-term Use of Nicotine Chewing Gum and Mercury Exposure from Dental Amalgam Fillings. J Dent Res. January, 75(1): 594-598,

Salonen JK, Seppänen K, Nyyssönen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R(1995). Intake of Mercury From Fish, Lipid Peroxidation, and the Risk of Myocardial Infarction and Coronary, Cardiovascular, and Any Death in Eastern Finnish Men. Circulation 91:645-655

Song TY and Yen GC(2002). Antioxidant Properties of Antrodia camphorata in Submerged Culture. J Agric Food Chem. 50: 3322-3327

Steinberg D and Witztum JL(1990). Lipoproteins and atherogenesis: current concepts. JAMA. 264:3047-52.

Virtanen JK, Rissanen TH, Voutilainen S, Tuomainen TK(2007). Mercury as a risk factor for cardiovascular diseases. Jr of Nutri. Bioche. 18: 75 –85

Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen TP, Korhonen MJ, Valkonen VP, Jari KS, Laukkanen A, Salonen JT(2005). Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern finland. Arterioscler Thromb Vasc Biol. 25: 228-233

WHO(1991). Inorganic Mercury. Environmental Health Criteria, vol. 118.

Woods JS, Martin MD, Leroux BG, DeRouen TA, Leitão JG, Bernardo MF, Luis HS, Simmonds PL, Kushleika JV and Huang Y(2007). The Contribution of Dental Amalgam to Urinary Mercury Excretion in Children. Environ Health Persp. 115: 1527–1531

Yang et al.(2006). Antrodia camphorata in submerged culture protects low density lipoproteins against oxidative modification. The Am Jr of Chin Med, 34: 217-231

Yasutake A and Noriyuki H(2006). Accumulation of Inorganic Mercury in Hair of Rats Exposed to Methylmercury or Mercuric Chloride. Tohoku J Med. 210: 301-306

Yoshizawa K, Rimm EB, Morris JS, Spate VL, Hsieh CC, Spiegelman D, Stampfer MJ and Willett WC(2002). Mercury And the risk of coronary heart disease in men. N Engl J Med. 347: 1755-1760

Zalups RK and Lash LH (1997). Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury. Drug Metab Dispos. 25:516–523

Zalups, RK(2000). Molecular interactions with mercury in the kidney.
Pharmacol. Rev. 52: 113–143.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔