跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡漢章
研究生(外文):Mick Tsai
論文名稱:鎳鋁鐵鈮合金經壓延後之顯微結構及機械行為之研究
論文名稱(外文):A study on the microstructure evolution and mechanical behaviors of Ni-Al-Fe-Nb based intermetallics by roll
指導教授:鄭憲清
指導教授(外文):Jason S-C Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:103
中文關鍵詞:
外文關鍵詞:nickelaluminumironniobium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:555
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗之目的在於探討46.5Ni-25Al-27.5Fe-1Nb合金經熱軋及冷軋後之各種條件的顯微結構及機械行為。本實驗選擇以鑄造方法來配製合金,在氬氣氣氛保護下,使用電弧熔煉、墜落式鑄造法製造成鑄塊胚料,並且經由在1000ºC下做4小時退火熱處理以消除鑄造應力。再以單輥輥軋機實施一連串的壓延,首先以熱軋(Hot Rolling)從厚度約10mm的鑄塊重複壓軋至3mm的厚度,每趟將鑄塊放置800℃的高溫爐內15分鐘,每趟的壓延量約0.1mm。當厚度壓軋到3mm時,再實施500℃冷軋至1.5mm。
在壓延至1.5mm厚度後,部份製作成標距平行區為3mm×2mm×20mm之拉伸試片,分別於大氣、真空兩種氣氛下,進行(1)固定溫度為25℃對不同應變速率(2×10-2s-1,2×10-3s-1,2×10-4s-1及8×10-5s-1)之拉伸試驗;及(2)固定應變率為2×10-4s-1對不同溫度(500℃、600℃、700℃及800℃)之拉伸試驗。另外部份試片則進行ICP及EDS成份分析與X光繞射分析(XRD),藉由掃瞄式電子顯微鏡(SEM) 、光學顯微鏡(OM)及穿透式電子顯微鏡(TEM)來觀察其組織與破斷面,以及微硬度之機械行為等變化。
本實驗研究結果顯示,46.5Ni-25Al-27.5Fe-1Nb介金屬合金經過熱軋、冷軋及熱處理後,依然可以獲得良好的機械性質。雖然本合金經過一系列的壓延,其內部的組織遭受嚴重的擠壓、變形,但是經過820℃,4小時的熱處理後,其組織又恢復成γ(fcc)相及β′ (有序的bcc,B2結構)相。機械性質也與鑄造狀的機械性質相當。
To understand the microstructure evolution and mechanical behaviors of Ni-25Al- 27.5Fe-1Nb based intermetallics by hot rolled and cold rolled in some condition are the objective of this study. The original alloys were prepared by arc-melting and drop casting under a argon atmosphere . For eliminating the casting stress , the sample was processed an annealing treatment with a temperature of 1000℃ for 4 hours . And then, the sample was rolled continually by one-roller .First , the sample was put into a high furnace with a temperature of 800℃for 15 minutes and was rolled successively from 10 mm to 3 mm in the thickness by hot rolling, the reduction is about 0.1mm every pass .When the thickness was rolled to 3mm , the sample was then rolled by cold rolling of 500℃ to 1.5mm in the thickness .
After the thickness is 1 .5 mm by rolling . A part of the samples were machined into tensile test specimens with the size of 3 mm×2 mm×20 mm .Tension test was performed under different atmosphere (Air and Ar) by using different strain rate ( 2×10-2s-1、2×10-3s-1、2×10-4s-1、8×10-5s-1) at 25℃ and different temperature (25℃,500℃,600℃,700℃and 800℃) with fixed strain rate of 2×10-4s-1 . And another samples were processed by ICP , EDS , SEM , TEM , OM and micro-hardness test in order to observe the different of structures , fracture appearance , hardness and mechanical behaviors etc..
From these tests show that this alloy still gains good mechanical properties after hot rolled, cold rolled and then annealing treatment. Due to rolling, the alloy caused serious deformation of grain and its structure, but after annealing treatment of 820℃ with 4 hours, its structure regenerate into γ(fcc)and β′ ( ordered bcc, B2 structure), and the mechanical properties are similar with casting.
中文摘要.................................................................................................................Ⅰ
英文摘要.................................................................................................................Ⅲ
誌謝....................................................................................................................... IV
目錄........................................................................................................................ Ⅴ
表目錄……………………………………......................................................... VIII
圖目錄................................................................................................................... IX
第一章 前言.............................................................................................................1
第二章 研究背景.....................................................................................................5
第三章 理論基礎...................................................................................................10
3-1 純鎳之性質...............................................................................................10
3-2 鎳鋁合金...................................................................................................11
3-3 鎳鐵合金...................................................................................................12
3-4 鋁鐵合金...................................................................................................12
3-5 鎳鋁鐵合金...............................................................................................12
3-6 鎳鋁鐵鈮合金...........................................................................................15
3-7 改善延展性之技術...................................................................................24
3-8 合金塑性變形時溫度與應變速率的影響...............................................27
3-9 輥軋工程的組織變化...............................................................................32
第四章 實驗流程...................................................................................................39
4-1 合金及試片的準備...................................................................................39
4-1-1 合金組成......................................................................................39
4-1-2 電弧熔解與墜落式鑄造..............................................................39
4-1-3 均質化熱處理..............................................................................40
4-1-4 壓軋與試片取樣..........................................................................41
4-2 成份分析與微觀組織分析.......................................................................51
4-2-1感應耦合電漿原子發射光(ICP)..................................................51
4-2-2 光學顯微鏡(OM).........................................................................52
4-2-3 掃瞄式電子顯微鏡(SEM)與EDS...............................................52
4-2-4 電子微探儀(EPMA)....................................................................53
4-3 相的鑑定...................................................................................................53
4-3-1 X光繞射(XRD) ...........................................................................53
4-3-2 熱差分析儀(DSC) ......................................................................54
4-3-3 穿透式電子顯微鏡(TEM)與NBD ............................................54
4-4 機械性質測試...........................................................................................55
4-4-1硬度試驗.......................................................................................55
4-4-2 拉伸試驗......................................................................................56
第五章 結果與討論...............................................................................................60
5-1感應耦合電漿原子發射光(ICP)..............................................................60
5-2 X光繞射分析(XRD) ...............................................................................61
5-3熱差分析儀(DSC) ...................................................................................61
5-4微觀組織觀...............................................................................................62
5-4-1合金光學顯微鏡觀察(OM)...................................................62
5-4-2掃瞄式電子顯微鏡觀察(SEM).................................................62
5-4-3 EDS成份分析.............................................................................63
5-5電子微探儀分析(EPMA) ........................................................................64
5-6穿透式電子顯微鏡(TEM)與NBD ..........................................................65
5-7硬度測試(Hardness Test)........................................................................65
5-8拉伸性質(Tensile properties) ..................................................................66
5-8-1不同應變速率下之常溫拉伸測試.............................................66
5-8-2固定應變速率下之高溫拉伸測試.............................................67
5-9拉伸破斷面之SEM觀察.........................................................................68
第六章 結論.........................................................................................................92
參考文獻.................................................................................................................94



















表目錄
表3-1 鎳的物理性質…..……………………………………………….………11
表3-2a (Ni-25Al-27.5Fe)99Nb1室溫之機械性質………...……………………...17
表3-2b (Ni-25Al-27.5Fe)99Nb1高溫之機械性質………………………………..17
表5-1合金配置成份與ICP分析……………….……………………………..70
表5-2 Ni-25Al-27.5Fe-1.0Nb合金鑄造之EDS成份鑑定………….……….79
表5-3 Ni-25Al-27.5Fe-1.0Nb合金之EDS成份鑑定….….…………………80
表5-4 Ni-25Al-27.5Fe-1.0Nb合金之不同退火條件的硬度表.....................…87
表5-5 各不同應變速率下之常溫拉伸性質(大氣環境下)…..............................88
表5-6 不同溫度下拉伸機械性質(氬氣保護)………………..............................89














圖目錄
圖1-1 鎳鋁合金相圖………………………………………………………….…3
圖1-2 面心立方晶格及以它為基礎的有序結構………………………….……4
圖1-3 體心立方晶格及以它為基礎的有序結構………………………….……4
圖2-1 鎳-鐵二元相圖………………………………………………………...…7
圖2-2 鐵-鋁二元相圖………………………………………………………...…8
圖2-3 鎳-鈮二元相圖……………………………………………………...……9
圖3-1 富鐵之鋁-鐵合金關係圖…………………………………………….…13
圖3-2 鎳-鋁-鐵合金固態圖……………………………………………………14
圖3-3 鎳-鋁-鐵-鈮鑄造狀態金相組織圖……… ………………………..……18
圖3-4 鎳-鋁-鐵-鈮鑄造狀態XRD………………………………………..……19
圖3-5 鎳-鋁-鐵-鈮退火狀態金相組織圖……………………………...………20
圖3-6 鎳-鋁-鐵-鈮退火狀態XRD……………………………………………..21
圖3-6-1 (Ni-25Al-27.5Fe)99Nb之室溫破壞表面………………………………..22
圖3-6-2 (Ni-25Al-27.5Fe)99Nb之高溫破壞表面………………………………..23
圖4-1 實驗流程圖……………………………………………………………...42
圖4-2 鑄塊及試片製作示意圖………………………………………………...43
圖4-3 電弧溶解爐及氬焊機外觀圖……………………………………...……44
圖4-4 電弧溶解爐結構圖…………………………………………………...…45
圖4-5 墜落式鑄造爐結構流程圖……………………………………………...47
圖4-6 軋延流程圖…………………………………………………………...…49
圖4-7 壓軋機示意圖………………………………………………………...…49
圖4-8 類似ASTM拉伸試片示意圖………………………………………...…50 圖4-9 靜態拉伸試驗機及電腦控制系統圖………………………………...…59
圖4-10 高溫拉伸時使用之可氣氛控制高溫爐及其控制器...............................59
圖5-1 Ni-25Al-27.5Fe-1.0Nb合金之不同過程中的X光繞射………………..71
圖5-2 Ni-25Al-27.5Fe-1.0Nb介金屬合金高溫熱差分析圖(鑄造)………….72
圖5-3 Ni-25Al-27.5Fe-1.0Nb介金屬合金高溫熱差分析圖(壓軋後)…….....72
圖5-4 試片幾何方向的代表符號……………………...………………………73
圖5-5 Ni-25Al-27.5Fe-1.0Nb介金屬合金之熱軋後金相照片
(a)前視圖(b)側視圖(c)上視圖…………………………………….……74
圖5-6 Ni-25Al-27.5Fe-1.0Nb介金屬合金之冷軋後金相照片
(a)前視圖(b)側視圖(c)上視圖…………………………………….……75
圖5-7 Ni-25Al-27.5Fe-1.0Nb介金屬合金之820℃退火後金相照片
(a)前視圖(b)側視圖(c)上視圖…………………..…………………...…76
圖5-8 Ni-25Al-27.5Fe-1.0Nb介金屬合金之熱軋後SEM二次電子相
(a)上視圖(b)側視圖(c)前視圖………………………………………..77
圖5-9 Ni-25Al-27.5Fe-1.0Nb介金屬合金之820℃(4小時)退火後
SEM二次電子相 (a)上視圖(b)側視圖(c)前視圖………...………..….78
圖5-10 Ni-25Al-27.5Fe-1.0Nb合金鑄造之二次電子像SEM圖
(A)基地(B)析出相(C)黑點…………………………………..…..……..79
圖5-11 Ni-25Al-27.5Fe-1.0Nb合金經軋延退火後之二次電子像
SEM圖(A)基地(B)大析出相(C)小析出相…………………………80
圖5-12 鎳鋁鐵鈮之二次電子EPMA觀察(冷軋後)…………………….……..81
圖5-13 鎳鋁鐵鈮之二EPMA觀察(退火後)……………………………..…….82
圖5-14鎳-鋁-鐵-鈮合金之(a) TEM明視野影像(b)基地〔001〕
Nano bean繞射圖 (c)析出物〔001〕Nano bean繞射圖…….……….83
圖5-15 鎳-鋁-鐵-鈮合金之TEM影像(a)基地明視野影像(b)基地〔012〕
Nano Bean繞射圖……………...………………………………………84
圖5-16 鎳-鋁-鐵-鈮合金之TEM影像(a)析出物明視野影像 (b)析出物
〔112〕Nano Bean繞射圖……………………………..………………85
圖5-17 Ni-25Al-27.5Fe-1.0Nb合金之軋延階段的硬度比較圖……...............86
圖5-18 Ni-25Al-27.5Fe-1.0Nb合金之維氏微小硬度比較圖….......................87
圖5-19不同應變速率下之常溫拉伸機械性質(大氣環境下)…………....88
圖5-20不同溫度下拉伸機械性質(氬氣保護)…….………………...……89
圖 5-21 介金屬合金在(a)2×10-2S-1、(b)2×10-3S-1、(c)2×10-4S-1、
(d)8×10-5S-1大氣環境下、常溫拉伸破斷後之SEM觀察……………..90
圖5-22 Ni-25Al-27.5Fe-1Nb 介金屬合金在(a)500℃、(b)600℃、(c)700℃
(d)800℃ 環境下、2×10-4S-1拉伸破斷後之SEM觀察……..….....…91
[1].C.H. Tsau,A study on the microstructure evolution and mechanical behaviors of Ni-Al-Fe based intermetallics, department of Materials Science and Engineering, National Tsing Hua University, Taiwan, R.O.C.
[2].CHUN-HUEI TSAU, JIEN-WEI YEH, and JASON SHIAN-CHING JANG, Mechanical Behavior of Chromium or Niobium Modified Ni47.5Al25Fe27.5 Alloy at Elevated Temperature, vol.37A, 2006.
[3].蔡政偉,添加鈦對鎳矽基介金屬合金顯微結構及機械行為之影響,義守大學材料科學與工程學系,2004年。
[4].G.V.Raynor and V.G.Rivlin.Phase Equilibrium in Iron Ternary Alloys, The Institute of Metals, London, no.4, 1988, p.14.
[5].山口正治,金屬間化合物,科學,北京市,1991年。
[6].Chun-Huei, Jason Shian-Ching Jang&Jin-Wwei Yeh. Themicrostructures and mechanical properties of niobium-modified Ni-25Al-27.5Fe intermetallics, Elsevier, 1996.
[7].G.V.Raynor and V.G.Rivlin.Phase Equilibrium in Iron Ternary Alloys, The Institute of Metals, London, no.4, 1988, p.46.
[8].G.V.Raynor and V.G.Rivlin.Phase Equilibrium in Iron Ternary Alloys, The Institute of Metals, London, no.4, 1988, p.10.
[9].T.B.Massalski,J.L.Murray,L.H.Bennett&H.Baker ASM, Metal, Park, Ohio, Binary Alloy Phase Diagram for Nb- Ni alloy, 1986, p.1682.
[10].金重勳博士,機械材料,台灣復文,1989年,p.438。
[11].王木琴博士,機械材料,台灣復文,1998年,p.518。
[12].C.H. Tsau, A study on the microstructure evolution and mechanical behaviors of Ni-Al-Fe based intermetallics, department of Materials Science and Engineering, National Tsing Hua University, Taiwan, R.O.C, p.7.
[13].王木琴博士,機械材料,台灣復文,1998,p.523。
[14].C.H. Tsau, A study on the microstructure evolution and mechanical behaviors of Ni-Al-Fe based intermetallics, department of Materials Science and Engineering, National Tsing Hua University, Taiwan, R.O.C, p.20.
[15].H. Mughrabi, J. Phys. Ⅳ3, 1993, p.659.
[16].H.-J.Christ, H. Mughrabi, S. Kraft, F. Petry, R. Zauter, K.Eckert, in: J. Bressers, L.Remy(Eds.), Fatigue Under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, p.1.
[17].H.Okamoto and P.A.Beck, Metall.Trans., 1971, p.569.
[18].G.V.Raynor and V.G.Rivlin.Phase Equilibrium in Iron Ternary Alloys, The Institute of Metals, London, no.4, 1988, p.107.
[19].G. C. Kaschner, J. C. Gibeling, Scr. Mater, 1996, p.1397.
[20].G. C. Kaschner, J. C. Gibeling, Acta Mater, 2002, p.653.
[21].Chun-Huei, Jason Shian-Ching Jang&Jin-Wwei Yeh. The microstructures and mechanical properties of niobium-modified Ni-25Al-27.5 Fe intermetallics, Elsevier, 1996, pp.435-436.
[22].D. Kuhlmann- Wilsdorf, C.Laird, Mater. Sci. Eng., 1979, p.111.
[23].M. Bayerlein, H.-J. Christ, H.Mughrabi, Mater. Sci. Eng., 1989, p.11.
[24].E. Krempl, J. Mech. Phys. Solid, 1979, p.363.
[25].J. M. Meininger, S.L. Dickerson, J.C. Gibeling, Fatigue Fract. Eng.Mater.Struct., 1996, p.85.
[26].P. Li, N. J. Marchand, B. Ilschner, Mater. Sci. Eng., 1989, p.41.
[27].K. B. S Rao, M. Valsan, R. Sandhya, S.L. Mannan, P. Rodriguez, Metall. Trans., 1993, p.913.
[28].A.Renard, A. S. Cheng, R.de la Veaux, C.Laird Mater. Sci.Eng., 1983, p.113.
[29].T.H. Sanders, E.A. Starke, Metall. Trans., 1976, p.1407.
[30].T.H. Sanders, D.A. Mauney, J. T. Staley, in: R. I. Jaffee, B.A. Wilcox (Eds.) Fundamental Aspects of Structural Alloy Design, Plenum Press, New York, 1977, p.487.
[31].C.H.Tsau, J.S.C.Jang and J.W.Yeh, Mater Sci.Eng., 1992, p.264.
[32].K.Ishida, R.Kainuma, N.Ueno and T. Nishizawa, Metall, Trans., 1991, p.441.
[33].C.L.White, R.A.Padgett, C.T.Liu and S.M.Yalisove, Surface and Grain Boundary Segregation in Relation to Intergranular Fracture, Boron and Sulfur in Ni3Al, Scripta Metall, vol.18, 1984, pp.1417-1419.
[34].W.C.Oliver, In High-temperature Ordered Intermetallic Alloys Ⅲ, MRS conf. Proc., vol.133, Materials research Society, Pittsburgh, 1989, pp.397-402.
[35].W.C.Oliver and C.L.White, The segregation of Boron and its effect on the fracture of an Ni3Si based alloys, Materials Research Society, 1987, pp.241-250.
[36].Szu-Ko Wang, A study on the microstructure evolution and mechanical behaviors of the Ni-19Si-3Nb based intermetallic alloys doped with Boron or Carbon by using microalloying methods, ISU, 1998.
[37].N.Masahashi, T.Takasugi and O.Izumi,Mechanical Properities of Ni3Al containing C, B.and Be,Act Metall, vol.36, no.7, 1988, pp.1823-1833.
[38].J.S.C.Jang and L.J.Chang, effect of heat treatment on the microstructure change and mechanical properties for Ni-19Si-3Nb-0.15B intermetallic alloy, materials chemistry and physics, vol.82, 2003, pp.128-133.
[39].E.M.Schulson and D.R.Barker, Scripta Metall., 1983, p519.
[40].E.M.Schulson, proposal to dffice of basic energy science, U.S.Department of Energy contract no.02, 1983, p.86.
[41].CNS 2111 拉伸試驗法,1997年。
[42].ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials, 2001.
[43].材料分析,中國材料科學學院,1996年。
[44].K.K.Chawla and Meyers, Mechanical Behavior of Materials, 1999, pp.526-535.
[45].E.D.George, Mechanical Metallurgy 3rd ed., 1988, pp.310-314.
[46].H.Conrad, and J.Metals, vol.16, 1964, pp.582-885.
[47].Pierre Villars, Alan Prince, H.Okamoto,Handbook of Ternary Alloy Phase Diagrams, ASM International, 1986, p.12796.
[48].金屬材料機械性能測試,工業技術研究院,工業材料研究所,1993年。
[49].E.Reed-Hill Robert, physical metallurgy principles, 3rd Ed., 1994, p.867.
[50].H.Conrad and H.Wiedersich, order from infotrieve, Acta Met., vol.8, 1960, p.128.
[51].依日光編撰,產業板材輥軋加工,復漢,pp.205-206,1993年。
[52].R. Zauter, Petry, H.-J. Christ, H. Mughrabi, in: H. Sehitoglu (Ed.) Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, American Society for Testing and Materials, Philadelphia, PA, 1993, p.70.
[53].H. Mughrabi, R. Wamg, in: N.Hansen, A. Horsewell, T.Leffers, H. Lilholt (Eds.) Deformation of Polycrstals:Mechanisms and Microstructures, Proceedings of the Second Risø, Denmark, 1981, p. 87.
[54].H.Mughrabi, in: H. J. McQueen, J,-P. Bailon, J.I. Dickson, J.J. Jonas, M.G. Akben (Eds.), Proceedings Seventh International Conference on the Strength of Metals and Alloys Pergamon Press, Oxford, 1986, p. 1917.
[55].L. Llanes, C. Laird, Mater. Sci. Eng., 1993, p.1.
[56].M. Jain, J. Mater. Res., 1990, p.2079.
[57].R. Zauter, H.J. Christ, H. Mughrabi, Metall. Mater. Trans., 1994, p. 407.
[58].S.L. Dickerson, J.C. Gibeling, Mater. Sci. Eng., 2000, p.121.
[59].賴耿陽,最新冷軋成形全集,復漢出版社,pp.47-58。
[60].C.H. Tsau, A study on the microstructure evolution and mechanical behaviors of Ni-Al-Fe based intermetallics, Department of Materials Science and Engineering,National Tsing Hua University, Taiwan, R.O.C., p.55.
[61].機械工程手冊8,熱處理與表面處理-精密製造,五南圖書出版公司,pp.7-38,2002年。
[62].U. F. Kocks, H.Mecking, in: M.F. Ashby, R. Bullough, C. S. Hartley,
J.P. Hirth (Eds), Dislocation Modeling of Physical Systems, Pergamon Press, Oxford, 1981, p.1917.
[63].U. F. Kocks, A. S. Argon, M. F. Ashby, Prog. Mater. Sci., 1975, p. 1.
[64].R.A. Mulford, Acta Metall., 1979, p.1115.
[65].P. Haasen, Phil. Mag., 1958, p.384.
[66].S.saimoto, H. Sang, Acta Metall., 1983, p.1873.
[67].S.E.Hsu and I.C.Hsu, Strain rate sensitivity of single crystal NiAl, 1995.
[68].A.Ball et al., Acta Metall., 1996, p.1517.
[69].N.J.Zaluzec et al., Scripta Metall., 1974, p.1049.
[70].I.Baka et al., Metall. Trans., 1984, p.1129.
[71].A.Inoue et al., J.Mater.Sci., 1984, p.3097.
[72].K.Ishida et al., Metall.Trans., 1991, p.441.
[73].C.T.Liu, and J.O.Stiegler, ASM Metals Handbook, 10th Ed., Vol.2, 1990, p.913.
[74].S.F.Hdieh, S.K.Wu and H.C.Lin, Maetensitic transformation of a Ti-rich Ti51Ni47Si2 shape memory alloy, 2001.
[75].E.P.Geoge,C.T.Liu and D.P.Pope,Mechanical behavior of NiAl: effects of environment, strain rate, temperature and boron doping, 1995.
[76].T.Takasugi, Microstructural control and mechanical properities of nickel silicides. Intermetallics, 2000.
[77].T.Takasugi, M.Wada,Y.Kaneno, H.Inoue, Microstructural effect on moisture-induced embrittlement of the Ni3 (Si,Ti)-based alloys, 2002, p.329.
[78].S.Van Dyck, L. Delaey, L.Froyen&L.Buekenhout, Microstructural evolution and its influence on the mechanical properities of a nickel silicide based intermetallic alloy, 1996.
[79].Albert B. Tanner, Robert D.McGinty, David L.McDowell, Modeling temperature and strain rate hidtory effects in OFHC Cu, 1998.
[80].S.C.Deevi&V.K.Sikka, Nickel iron aluminides: an overview on properties, processing, and applications, 1995.
[81].P.S.Lee, D.Mangelinck, K.L.Pey, J.Ding, C.S.Ho,A.See, On the Ni-Si phase transformation with/without native oxide, 2000.
[82].H.J.Grabke, Oxidation of NiAl and FeAl, 1999.
[83].C.T.Liu, Recent advances in ordered intermetallics, 1995.
[84].L.Gregoratti, S.Gunther, J.Kovac, M.Marsi, M.Kiskinova, Spectromicroscopy of silicide phases formed at Ni/Si Interfaces, 1999.
[85].O.N.Mryasov, Yu. N.Gornostyrev, M.van Schilfgaarde, A.J Freeman, Superdislocation core structure in L12Ni3Al, Ni3Ge and FE3Ge: Peierls-Nabarro analysis starting fromabinitio GSF energetics calculations, 2002.
[86].J.Cermak, V.Rothova, Surface barrier for hydrogen permeability in Ni3Al- influence of Cr, Fe and Zr, 2001.
[87].Y.Kaneno, I.Nakaaki, T.Takasugi, Texture evolution during cold rolling and recrystallization of L12-type ordered Ni3(Si,Ti) alloy, 2002.
[88].B.Tounsi, P.Beauchamp, Y.Mishima, T.Suzuki and P.Veyssiere, The deformation microstructure in Ni3Si polycrstals strained over the range of temperation of flow stress anomaly.
[89].T.Takasugi, H.Kawai, Y.Kaneno, The effect of Cr addition on mechanical and chemical properties of Ni3Si alloys, Materials Science and Engineering, 2002, pp.446-454.
[90].T.Nakamura, Y.Kaneno, H.Inoue, T.Takasugi, The effect of second-phase Ni solid solution on environmental embrittlement of L12-type Ni3(Si,Ti) ordered alloys, Materials Science and Enginerering, 2004, pp.259-270.
[91].Jason S.C.Jang, C.J.Ou, C.Y.Cheng, The evolution of micrestructure change and mechanical properties for a nickel silicide based alloy doped with carbon and boron, Materials Science and Engineering, 2002, pp.455-460.
[92].Michael Zaiser, The influence of strain-rate fluctuations on the stability of low-temperation plastic deformation, 1996, pp.278-279.
[93].J.S.C.Jang, T.Z.Ou, and C.Y.Cheng, The microstructure change and mechanical behavior of the Ni-19Si-3Nb based alloy doped with boron.
[94].Shanthi Subramanian, David A.Muller, John Silcox, Stephen L.Sass, The role of chemistry in controlling the bonding and fracture properties of grain boundaries in L12 intermetallic compounds, Materials Science and Engineering, 1997, pp.297-308.
[95].W.C.Oliver and C.L.White, The segregation of boron and iIts effect on the fracture of An Ni3Si based alloy, MateriIals Research Society, Symp. Proc., Vol.81, 1987.
[96].S.F.Hsieh, S.K.Wu, H.C.Lin, Transformation temperature and second phases in Ti-Ni-Si ternary shape memory alloys with Si<2 at.%, Journal of alloys and compounds, 2002, pp.162-166.
[97].R.Merabtine, J.Devaud-Rzepski, M.F.Trichet, M.Cornet, Two-phase intermetallic alloy Ni3(Al, Si): microstructure and mechanical properties, Intermetallics, 2001, pp.1015-1020.
[98].C.Rado, S.Kalogeropoulou and N.Eustathopoulos, Wetting bonding of Ni-Si alloys on Silicon carbide, 1998, pp.374-377.
[99].Jason S.C.Jang, L.J.Chang, Effect of carbon and boron on the precipitate microstructure and mechanical behavior of the Ni-19Si-3Nb based alloy, Intermetallics, 2002, pp.967-977.
[100].Jason S.C.Jang, H.R.Wong, L.J.Chang, S.J.Wong, Effects of environment and temperature on the mechanical behavor of the Ni-19Si-3Nb intermetallic alloy doped with boron and carbon, 2004.
[101].Akihisa Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, 1999.
[102].George C. Kaschner, Jeffery C.Gibeling, A study of the mechanisms of cyclic deformation in f.c.c metals using strain rate change tests, 2001.
[103].A.O.Mekhrabov, M.V. Akdeniz and M.M.Arer, Atomic ordering characteristics of Ni3Al intermetallics with substitutional ternary additions, 1996.
[104].C.H. Tsau, A study on the microstructure evolution and mechanical behaviors of Ni-Al-Fe based intermetallics, department of Materials Science and Engineering,National Tsing Hua University, Taiwan, R.O.C., p.209.
[105].C.H. Tsau, A study on the microstructure evolution and mechanical behaviors of Ni-Al-Fe based intermetallics, department of Materials Science and Engineering, National Tsing Hua University, Taiwan, R.O.C., p.216.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊