跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒志文
研究生(外文):Chih-wen Chou
論文名稱:鑄造氣氛對鎳矽基介金屬機械性質影響之研究
論文名稱(外文):The effect of casting atmosphere on the microstructrue and mechanical properity of a nickel silicide based intermetallic alloy
指導教授:鄭憲清
指導教授(外文):Jason S-C Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:86
中文關鍵詞:
外文關鍵詞:nickelsilicon
相關次數:
  • 被引用被引用:1
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技蓬勃發展,當今產業界對產品的表面外觀、尺寸精密度、製程可靠度、使用壽限等功能要求愈來愈高,諸如國防工業零組件、產業用組件及民生用品等,為達快速量產與降低成本目的,選擇探討於鑄造氣氛下改變鎳矽(Ni3Si)基介金屬合金成分比例之顯微組織與機械性質的影響,期望得到一較佳的合金製程,提昇鑄造材料的機械性能,為零件製造業找出最理想的製程,以降低生產成本。
鎳矽介金屬合金(Ni3Si,屬有序面心立方Ll2結構)因其具有良好的高溫強度、抗腐蝕性及抗高溫氧化性能,所以是一種非常有應用潛力的高溫結構材料。但是,Ni3Si與其它Ll2型介金屬合金一樣,室溫下存在有由水氣或氫氣誘發的環境脆化問題,限制了它作為結構材料的工程應用。近年來,經由前人不斷的努力與嘗試,已有相當多的研究致力於利用物理冶金原理及創新的製程技術來探討介金屬常溫脆性發生的原因並改善提升其抗破裂強度;根據研究,發現同時添加鈮與硼兩種元素,可有效抑制晶界脆性進而提升常溫延性,另添加鉻元素可以有效改善介金屬合金的高溫韌性。因此,經由瞭解本合金的環境脆化本質、產生條件及影響因素,再針對發生因素改進其機械性質,將是工程應用的關鍵。
本實驗以鎳-18矽基介金屬合金,應用微量合金法添加硼元素(添加量0.2at%)、及以巨量合金法添加鈮元素(各添加量2at%與3at%)與添加鉻元素(添加量1at%),分別製成Ni-18Si-2.0Nb-0.2B-1.0Cr介金屬合金及Ni-18Si-3.0Nb-0.2B-1.0Cr介金屬合金,在大氣氣氛及真空氣氛之下,使用高週波爐以精密鑄造方式製成標準拉伸試棒鑄塊胚料,持續將鑄塊進行1050℃二十四小時均質化熱處理及700℃十小時時效熱處理,分別進行固定溫度為25℃對不同應變速率(2×10-2 s-1,2×10-3 s-1,2×10-4 s-1及8×10-5 s-1)之拉伸試驗;並取樣進行GDS及EDS成份分析與X光繞射分析,藉由掃瞄式電子顯微鏡、穿透式電子顯微鏡及硬度試驗機,觀察其顯微組織、破斷面之模式及硬度之變化,並探討添加硼、鉻、鈮元素含量對合金顯微結構及機械性質之影響。
本實驗之研究結果證實,添加鉻元素可以增加高溫延性且較不受環境因素影響;添加硼元素可以提升晶界契合性及降低環境脆化問題,當溫度為25℃時,於真空氣氛下製備之試棒在大氣中延伸率可到達12.4﹪,抗拉強度則有1124MPa,表現出較佳的機械性質;另外,在拉伸破斷面方面,不論是Ni-18Si-2.0Nb-0.2B-1.0Cr介金屬合金或Ni-18Si-3.0Nb-0.2B-1.0Cr介金屬合金,破斷面均呈延性渦狀破斷面夾雜劈裂破斷面相似的現象;惟於真空氣氛下製備之Ni-18Si-3.0Nb-0.2B-1.0
Cr介金屬合金,其延性渦狀破斷面較Ni-18Si-2.0Nb-0.2B-1.0Cr介金屬合金更為細緻,推斷其原因係因鈮元素的增加可以改善延性的緣故所致。
With the vigorous development of the technology,the functional requirements of the industries for the outer appearance、dimensional precision、processing reliability and service life of the products are more demanding,such as the parts of the defense industries、process control industries and people''s livelihood appliances。To achieve the goal of rapid production and reduce the production costs,we choose to investigate the affect of the microstructure and mechanical properties by changing the composition of the Ni3Si based intermetallic alloy compound under casting atmosphere and wish to obtain a better alloy process to promote the mechanical properties of the casting materials and find the optimum process for the intermetallic compound to reduce the production costs。
Ni3Si based intermetallic alloy (Ni3Si has the face-centered L12 structure) compounds possess the characteristics of high temperature intensity、corrosion resistance and high temperature oxidation resistance which have high potential as the high temperature structural materials。 However,Ni3Si is similar to other L12 type intermetallic compounds which has the environmental brittleness problem induced by the water moisture and hydrogen gas at room temperature and limit it as a structural material for the engineering applications。Over the past few years,many studies has been done using the physical metallurgy and innovative concepts and the research results show that by adding boron and niobium simultaneously could effectively inhibit the brittleness at the grain boundary and promote the ductility at room temperature。Besides,the addition of chromium could also effectively improve the high temperature toughness。Therefore,through the understanding of the characteristics of the environmental brittleness、preparation conditions and environmental factors of the intermetallic compound and focus on these factors to improve its mechanical properties will be the key points for the engineering applications of the intermetallic compound。
In our experiment,we use Ni-18 silicon intermetallic compound by applying the micro-alloy addition to add boron element (quantity for addition is 0.2%) and macro-alloy addition to add niobium (quantities for addition are 2% and 3%, respectively) as well as the addition of chromium (quantity for addition is 1%) to prepare the Ni-18Si-2.0Nb-0.2B-1.0Cr intermetallic alloy compound and the Ni-18Si-3.0Nb-0.2B-1.0Cr intermetallic alloy compound。We use high frequency furnace heat treatment to precisely casting the blank material for the standard drawing testing bar casting block under atmosphere and vacuum atmospheric conditions and continuously proceeding at 1050° for 24 hours homogenization heat treatment and at 700°C for 10 hours aging heat treatment for the casting block and fixed at 25°C to proceed the drawing testing on various strain rate(2×10-2s-1,2×10-3s-1,2×10-4s-1,8×10-5s-1 ) and also sampling to proceed the GDS and EDS composition analysis and XRD analysis。The microstructure 、rupture cross section mode and the variations of hardness could be observed using SEM、TEM and hardness tester。 We also investigate the addition of boron、chromium and niobium elements on the affect of the microstructure and mechanical properties。
Experimental results indicate that the addition of chromium could increase the high temperature ductility which is less affected by the environment。The addition of boron element could promote the grain boundary homogeneity and reduce the environmental brittleness problem。When the temperature is fixed at 25°C,the elongation rate of the testing bar prepared under vacuum atmosphere could reach to 12.4% at atmospheric condition and the tensile intensity could reach to 1124MPa which show better mechanical properties。Besides,in the drawing rupture cross section,no matter the Ni-18Si-2.0Nb-0.2B-1.0Cr intermetallic alloy compound or the Ni-18Si-3.0Nb-0.2B-1.0Cr intermetallic alloy compound,the rupture cross sections all show similar phenomena with ductile vortex rupture cross section mixed with the splitting rupture cross section 。The Ni-18Si-2.0Nb-
0.2B-1.0Cr intermetallic alloy compound prepared under vacuum atmosphere show more delicate in its ductile vortex rupture cross section than the Ni-18Si-3.0Nb-0.2B-1.0Cr intermetallic alloy compound。The main reason might be the addition of niobium could improve the ductility of the intermetallic compound。
中文摘要 Ⅰ
英文摘要 Ⅳ
誌謝 Ⅶ
總目錄 Ⅷ
表目錄 XI
圖目錄 XII
第一章 前言 1
第二章 研究背景 4
第三章 理論基礎 8
3.1 影響鎳矽基合金延性之因素 10
3.1.1 介在物 10
3.1.1.1 添加鈮元素對鎳矽基介金屬之影響 10
3.1.1.2 添加硼元素對鎳矽基介金屬之影響 10
3.1.1.3 添加鉻元素對鎳矽基合金之影響 12
3.1.1.4 添加鉻元素對介金屬化合物腐蝕行為之影響 12
3.1.1.5 添加鉻元素對介金屬化合物高溫氧化之影響 12
3.2 環境因素 13
3.3 表面因素 16
3.4 冷卻速率 17
3.5 有害物質 17
3.6 滑移系統 17
3.7 晶界因素 18
3.8 成核因素 18
3.9 劈裂強度 18
3.10 鎳矽基合金之延軔性改善 19
3.10.1 巨量合金法 19
3.10.2 微量合金法 20
3.10.3 纖維強化 20
3.11 鎳矽基合金與鎳矽鈮基合金 21
3.11.1 相變化 21
3.12 添加鈮元素對Ni-19Si基合金微觀組織變化及機械行為之影響 27
第四章 實驗流程 31
4.1 陶模製備(Shell Mold Making) 31
4.2 合金及試桿的準備 31
4.2.1 合金組成(Alloy Combination) 31
4.2.2 高週波熔解爐鑄造(Induced-melting Casting) 32
4.2.3 均質化熱處理 32
4.3 微觀組織分析 32
4.3.1 光學顯微鏡(Optical Microscopy) 33
4.3.2 掃掃瞄式電子顯微鏡(Scanning Electron Microscopy)與EDS
(Energy Dispersion Spectrrometer) 33
4.4 相的鑑定 33
4.4.1  X光繞射 (X-ray Diffractometer) 34
4.4.2 熱差分析儀(Differential Thermal Analysis) 34
4.4.3 穿透式電子顯微鏡(Transmission Electron Microscopy)與
擇域繞射(Select Area Diffraction pattern) 34
4.5 機械性質的分析 35
4.5.1 硬度值量測 35
4.5.2 拉伸測試(Tensile Test) 36
第五章 結果與討論 44
5.1 輝光放電分析(G.D.S) 44
5.2  X光繞射分析(XRD) 47
5.3 金相微觀組織觀察及微觀成分分析 47
5.3.1 合金經鑄造及熱處理後之觀察 47
5.3.2 EDS成份分析 50
5.3.3 微觀組織的改變 56
5.4 穿透式電子顯微鏡(TEM)與擇域繞射(SAD) 56
5.5 硬度測試(Hardness Test) 57
5.6 拉伸性質(Tensile properties) 60
5.6.1 不同應變速率下之常溫拉伸測試(Room temperature tensile
Test with different strain rate) 63
5.6.2 應變速率敏感指數-m值(Strain rate sensitivity value ) 67
5.6.3 環境對拉伸性質之影響 67
5.7 拉伸破斷面之SEM觀察 68
第六章 結論 74
參考文獻 76



表目錄

表5-1 鎳矽鈮基介金屬合金配置目標成份與輝光放電分析(GDS) 45
表5-2 Ni-18Si-3.0Nb-0.2B-1.0Cr氮氧分析 46
表5-3 鎳-18矽-2.0鈮-0.2硼-1.0鉻合金EDS成份鑑定 52
表5-4 鎳-18矽-3.0鈮-0.2硼-1.0鉻合金EDS成份鑑定 52


















圖目錄

圗3-1  (a) Ni3Si之L12有序f.c.c.結構
   (b)硼或碳格隙型原子於 Ni3Si 之位置 9
圗3-2  鎳矽二元相圖與主要之結晶結構 22
圗3-3  鎳-鈮二元相圖 24
圖3-4  鈮-矽二元相圖 25
圖3-5  鎳-矽-鈮三元相圖 26
圖3-6  鎳-19矽基合金添加不同比例鈮元素後對 X光繞射之影響 28
圖3-7  鎳-19矽基合金添加不同比例鈮元素後對晶格常數之改變 29
圖3-8  鎳-19矽基合金之TEM影像與擇域繞射圖 30
圖4-1  實驗流程 37
圖4-2  鑄件及試片製作示意圖 38
圖4-3  ASTM拉伸試棒圖 39
圖4-4  陶模準備的流程 40
圖4-5  (a)氧化鋁坩鍋及(b)陶模 41
圖4-6  高週波熔解爐外觀圖 42
圖4-7  Hung TA Instrument 靜態拉伸試驗機之主機及電腦控制系統 43
圖5-1  各成份之X-ray分析 46
圖5-2  鎳-18矽-2.0鈮-0.2硼-1.0鉻介金屬合金SEM二次電子相(a)
真空氣氛製備鑄造後(b)大氣氣氛製備鑄造後(c)真空氣氛製備
均質化(d)大氣氣氛製備均質化(e)真空氣氛製備時效後(f)大氣
氣氛製備時效後 48
圖5-3  鎳-18矽-3.0鈮-0.2硼-1.0鉻介金屬合金SEM二次電子相(a)
真空氣氛製備鑄造後(b)大氣氣氛製備鑄造後(c)真空氣氛製備
均質化(d)大氣氣氛製備均質化(e)真空氣氛製備時效後(f)大氣
氣氛製備時效後 49
圗5-4  鎳-18矽-3.0鈮-0.2硼-1.0鉻合金EDS取樣位置示意圖
(a)基地(b)共晶區(c)析出物(d)第四相 51
圖5-5  鎳-18矽-2.0鈮-0.2硼-1.0鉻合金EDS取樣位置示意圖
(a)基地(b)共晶區(c)析出物(d)第四相 51
圖5-6  鎳-18矽-2.0鈮-0.2硼-1.0鉻之EDS觀察;其中(a)為元素分佈
圖(b)為鎳之分佈(c)為矽之分佈(d)為鈮之分佈(e)為鉻之分佈 54
圖5-7  鎳-18矽-3.0鈮-0.2硼-1.0鉻之EDS觀察;其中(a)為元素分佈
圖(b)為鎳之分佈(c)為矽之分佈(d)為鈮之分佈(e)為鉻之分佈 55
圖5-8  鎳-18矽-2.0鈮-0.2硼-1.0鉻合金之(a)TEM明視野影像(b)基地
B〔 11〕擇域繞射圖(c)析出物B〔011〕擇域繞射圖 58
圖5-9  鎳-18矽-2.0鈮-0.2硼-1.0鉻合金之TEM影像(a)基地明視野(
BF)影像(b)基地B〔001〕擇域繞射圖 59
圖5-10 Ni-18Si-2.0Nb-0.2B -1.0Cr合金與Ni-18Si-3.0Nb-0.2B -1.0Cr合
 金維氏硬度比較圖 61
圖5-11 Ni-18Si-2.0Nb-0.2B -1.0Cr合金之微小維氏硬度圖 61
圖5-12 Ni-18Si-3.0Nb-0.2B -1.0Cr合金之微小維氏硬度圖 62
圖5-13 Ni-18Si-2.0Nb-0.2B -1.0Cr合金與Ni-18Si-3.0Nb-0.2B -1.0Cr合
金微小維氏硬度比較圖 62
圖5-14 不同製程氣氛與不同應變速率對Ni-18Si-2.0Nb-0.2B -1.0Cr合
金之常溫拉伸機械性質 64
圖5-15 不同製程氣氛與不同應變速率對Ni-18Si-3.0Nb-0.2B -1.0Cr合
金之常溫拉伸機械性質 65
圖5-16 應變率對Stress-Strain曲線敏感指數影響 66
圖5-17 於大氣氣氛下製備Ni-18Si-2.0Nb-0.2B-1.0Cr 介金屬合金,在
常溫大氣環境下,不同應變速率拉伸破斷後之1000X SEM觀
察照片:(a) 2×10-2 s-1 (b) 2×10-3 s-1 (c) 2×10-4s-1 (d) 8×10-5 s-1 69
圖5-18 於真空氣氛下製備Ni-18Si-2.0Nb-0.2B-1.0Cr 介金屬合金,在
常溫大氣環境下,不同應變速率拉伸破斷後之1000X SEM觀
察照片:(a) 2×10-2 s-1 (b) 2×10-3 s-1 (c) 2×10-4s-1 (d) 8×10-5 s-1 70
圖5-19 於大氣氣氛下製備Ni-18Si-3.0Nb-0.2B-1.0Cr 介金屬合金,在
常溫大氣環境下,不同應變速率拉伸破斷後之1000X SEM觀
察照片:(a) 2×10-2 s-1 (b) 2×10-3 s-1 (c) 2×10-4s-1 (d) 8×10-5 s-1 71
圖5-20 於真空氣氛下製備Ni-18Si-3.0Nb-0.2B-1.0Cr 介金屬合金,在
常溫大氣環境下,不同應變速率拉伸破斷後之1000X SEM觀
察照片:(a) 2×10-2 s-1 (b) 2×10-3 s-1 (c) 2×10-4s-1 (d) 8×10-5 s-1 72
[ 1 ]. R.G. Davis and N. S. Stoloff,“High Temperature Ordered Intermetallic
Alloys”, Trans. TMS-AIME, Vol.233, p.714, 1965.
[ 2 ]. K.S.Kumar, in: J.H.Westbrook, R.L. Fleischer (Eds.), Intermetallic Copounds-Principle and Practice, Vol.2, Wiley, Chichester, UK, p.211,
1995.
[ 3 ]. T.E.Evans and A. C. Hart, Electrochem, Acta Metall., Vol.16, p.1955, 1971.
[ 4 ]. E. M. Grala, Wiley,“Mechanical Properties of Intermetallic Compounds”, New York, p.358, 1960.
[ 5 ]. K.S.Kumar and C.T.Liu, “Ordered Intermetallic Alloys, Part Ⅱ: Sillicides, Trialuminides, and Others”, JOM, Vol.28, 1993.
[ 6 ]. K. J. Williams, J. Inst. Metal, Vol.97, p.112,1969.
[ 7 ]. W.C.Oliver, C.L.White, in: N.S.Stoloff, C.C.Koch, C.T.Liu, O. Iaumi (Eds.), “Proceedings of the MRS Symposium on High-Temperature Ordered Intermetallic Alloys Ⅱ”, Vol.81, p.241,1987.
[ 8 ]. T. Takasugi, D. Shindo, O. Izumi, and M. Hirabayashi,“Intermetallic compound Ni-Si-Ti system Ni3Si & Ni3Ti alchemi”, Acta Metall., Vol 38, pp.739-745, 1990.
[ 9 ]. T. Takasugi, M. Nagashima and O. Izumi, “Strengthening and Ductilization of Ni3Si by the Addition of Ti Elements”, Acta Metall. mater, Vol.38, pp.747-753,1990.
[ 10]. T.Takasugi, O.Izumi, M.Yoshida, J.Mater,p.1173, Sci.26 1991.
[ 11]. W.C.Oliver, in: C.T.Liu, A.I.Taub, N.S.Stoloff, C.C.Koch (Eds.), “ Proceedings of the MRS Symposium on High-Temperature Ordered Intermetallic Alloys Ⅲ”, Vol.133, p.397, 1989.
[ 12]. J. S. C. Jang and C. H. Tsau,“The Effect of Niobium Additions on the Fracture of Ni-19Si-based alloys ”, Materials Science and Engineering, Vol.153, pp.525-531, 1992.
[ 13]. J.S.C.Jang, S.K.Wong, C.H.Tsau, in: Proceedings of The Third Pacific Rim Intermational Conference on Advanced Materials and Processing, Honolulu, Hawaii, USA, p.1989, 12 July 1998.
[ 14]. J.S.C.Jang, C.H.Tsau, and T.C.Tsai, “The Temperature Dependence on the Mechanical Properties of the Ni-19Si Based Alloys ”Proceeding of the 1994 Annual Conference of the Chinese Society for Materials Science.
[ 15]. C. T. Liu, E. H. Lee, E. P. George, and A. J. Duncan,“ Intergranular Fracture Tendency in NiAl Doped with Boron and Carbon”, Scripta Metallurgica et Materialia, Vol.30, pp.387-392, 1994.
[ 16]. C. T. Liu, E.P. George and W. C. Oliver, “Grain-boundary Fracture and Boron Effect in Ni3Si Alloys”, Intermetallics, Vol.4, pp.77-83,1996.
[ 17]. T.Takasugi, O.Izumi, “CO3Ti Intermetallic compound defect structure long rang order lattic ”Acta Metall. Vol.33, pp.1247-1253, 1985.
[ 18]. T.Takasugi, O.Izumi, and N.Masahashi, “Grain Boundary Fracture Ni3Al Intermetallic Compo und Superlattic Ordered Al”, Acta Metall, Vol.33, pp.1259-1263, 1985.
[ 19]. A.I.Taub, C.L.Briant, S.C.Huang, K.M.Chang and M.R.Jackson, Scripta Metall, Vol.20, pp.129-135, 1986.
[ 20]. W.C.Oliver and C.L.White, Mater Res.Soc.Symp, Proc, Vol.81, pp.241-253, 1987.
[ 21]. W.C. Oliver, “High Temperature Ordered Intermetallic Alloys”, Proc. MRS Symp, Vol.133, pp.397-401,1989.
[ 22]. W.C.Oliver, Proc.MRS Symp, “High Temperature Ordered Intermetallic Alloys”, Vol.133, pp.397-401, 1989.
[ 23]. T.Takasugi, D.Shindo, O.Izumi, and M.Hirabayashi, “Intermetallic compound Ni-Si-Ti system Ni3Si & Ni3Ti alchemi”, Acta Metall, Vol.38, pp.739-745, 1990.
[ 24]. T.Takasugi, M.Nagashima, O.Izumi, “Intermetallic compound Ni3Si, Ni3(Si,Ti) Ductility Mechanical Property”, Acta Metall, Vol.38, pp.747-755, 1990.
[ 25]. A.H.Cottrell, “Boron and Carbon in Nickel, Iron, and Ni3Al”, Materials Science and Technology, Vol.7, pp.585-591, 1991.
[ 26]. M. Yoshida and T. Takasud, Philos. Mag., Vol.65, pp. 41-47, 1992.
[ 27]. T. Takasugi and M. Yoshida,“Electronic States of Core Levels and Valence Bands for K[x]C[60] Studied by X-ray Photoelectro Spectroscopy”, Mater. Sci, Vol.26, pp.3032-3517, 1991.
[ 28]. C.T.Liu, E.P.George, W.C.Oliver, “Grain-boundary Fracture and Boron Effect in Ni3Si Alloys”, pp.77-82, June 1995.
[ 29]. J.S.C.Jang, S.K.Wong, P.Y.Lee, “The effect of boron on the micros tructure and mechanical behavior of and Ni-19Si-3Nb based alloy”. Materials Science and Engineering, Vol.17, pp.681-690, 2000.
[ 30]. H.Tanabe, T.Douki, T.Takasugi & T.Misawa, “Cathodic behaviour of boron and chromium added Ni3 (Si,Ti) intermetallics having high resistance to hydrogen-induced embrittlement”, Intermetallics, Vol.4, pp.189-192, 1996.
[ 31]. J.Cermak, V.Rothova, “Surface barrier for hydrogen permeability in Ni3Al influence of Cr, Fe and Zr”, Intermetallics, Vol.9, pp.403-408, 2001.
[ 32]. T.Takasugi, H.Kawai, Y.Kaneno, “The effect of Cr addition on mechanical and chemical properties of Ni3Si alloys”, Materials Science and Engineering A329-331, pp.446-454, 2002.
[ 33]. J.S.C.Hao-Jung Wang, “A study on the environmental embrittlement of the Ni-Si based intermetallic alloys doped with boron and carbon”, I-Shou University, 2001.
[ 34]. C.L.Ma, T.Takasugi and S.Hanada, “The Effect of trapped Hydrogen on Mechanical Behavior of Ni3Si, Ti) Intermetallic Compound”, Acta Mater, Vol.44, pp.1349-1359, 1996.
[ 35]. B.D.Cullity,Elements of x-ray Diffraction (2nd edition, Addison-Wesley, London), p.356, 1978.
[ 36]. C.T.Liu, C.L.White and J.A.Horton, Acta Metall, Vol.30, p.547, 1982.
[ 37]. E. P. George, C. T. Liu and D. P. Pope, Scripta Metall. Mater., vol.30, pp.37-41, 1994.
[ 38]. C.T.Liu, “Structure Intermetallics-Procedding (edited by R.Daroliaetal.)”, TMS, Warrendale, PA, p.365, 1993.
[ 39]. D.A.Muller, S.Subramanian, P.E.Batson, J.Silcox, and S.L.Sass, “Structure Chemistry and Bonding at Grain Bound daries in Ni3Al (1): The Role of Boron in Ductilizing Grain Boundaries, Actamater. Vol.44, pp.1637-1645, 1966.
[ 40]. C.T.Liu,Scripta Metall, Mater, Vol.27, pp.25-36, 1992.
[ 41]. Metal Handbook, American Society for Metal, “Fractography”, Metals park, Ohio, Vol.12 9thed. 1987.
[ 42]. S.Takenuchi and E.Kuramoto, Acta metal, Vol.21, pp.415-420, 1973.
[ 43]. J.Cermak, V.Rothova, “Surface barrier for hydrogen permeability in Ni3Al-influence of Cr, Fe and Zr”, Intermetallics 9, pp.403-408, 2001.
[ 44]. JH Westbrook, RL Fleischer, editors. Intermetallic compounds. Chichester, New York Brisbane, Toronto, Singapore. John Wiley & Sons, Vol.2, p.17, 1995.
[ 45]. L.M.Pike and C.T.Liu “ENVIRONMENTAL EFFECTS ON THE TENSILE PROPERTIES OF TWO Ni3Si-BASED ALLOYS”, Scripta Mater.42, pp.265-270, 2000.
[ 46]. S.Taniguchi, T.Shibate and H.Tsuruoka, Oxid. Met.,28, p.155, 1987.
[ 47]. C.T.Liu and V.K.Sikka, J.Met.,38, p.19, 1996.
[ 48]. J.A.Horton, J.V.Cathcart and C.T.Liu. Oxid. Met.,29, p.347, 1988.
[ 49]. I.Baker and E.P.George, “Intermetallic Compounds: an update, High Performance Materials”, Metals and Materials, pp.318-323, 1992.
[ 50]. P.Nagpal and I.Baker.Metall.Trans.,Vol.21, pp.2281-2290, 1990.
[ 51]. B.Schmidt, P.Nagpal and I.Baker.Proc.MRS, Vol.133, pp.755-761, 1989.
[ 52]. 劉錦川、鄭憲清,“規則化介金屬化合物之最新發展”,工業材料,116期,p.56, 1996。
[ 53]. C.T.Liu, & W.C.Oliver, Scripta Metall,25, p.1933, 1991.
[ 54]. A.R.Troianio, Trans.ASM, vol.52, pp.54-59, 1960.
[ 55]. N.J.Petch and P.Stables, Nature, Vol.169, pp.842-852, 1952.
[ 56]. P.Bation and P.Azou, Proc. Of World Met. Cong., Ist. ASM, p.535, 1951.
[ 57]. J.K.Tien, A.M.Thompson, I.M.Bemstein and R.J.Richards, “Hydrogen Transport by Dislocation”, Metall, Trans, Vol.17, pp.821-831, 1976.
[ 58]. C.T.Liu, C.L.White, and J.A.Horton, “Effect of Boron on Grain Boundaries in Ni3Al”, Acta Metall., Vol.33, pp.213-218, 1985.
[ 59]. 嚴轟編著,機械設計之允差配合,pp.66-82, 1974。
[ 60]. K.Aoki and O.Izumi, Trans. “Phase Stability and Mechanical Properties of IrAl Alloys”, JIM, Vol.19, 1997.
[ 61]. S.Van Dxck, L.Delaey, L.Froyen and L.Bekenhout, “Microstructural evolution and its influence on the mechanical properties of a nickel sillicide based intermetallic alloy”, intermetallics, Vol.5, pp.137-145, 1997.
[ 62]. T.Ogura, S.Hanada, T.Masumoto and O.Izumi, C.L.White and D.Fstein, “Supergonductor High Field A15-NB3SN TI-ADDITION NB-TUBE Method”, Metall. Trans., 9A 13/16A, p.441, 1978.
[ 63]. Jason S.C.Jang, J.C.Fwu, P.H.Chen, Z.H.Yaug, and S.T.Chuagll, “鎳矽介金屬合金微結構及常溫機械性質之研究”,91年度鑄造年會論文集p.9, 2002。
[64]. I. Baker and P. R. Munroe,“Improving Intermetallic Ductility and Toughness ”, Journal of Metals, Vol.28, 1988.
[ 65]. A Ph.D Thesis of Chun-Huei Tsau, advised by J. W. Yeh. And J. S. C. Jang, “A Study on the Microstructure Evolution and Mechanical Behaviors of the Ni-Al-Fe Based Intermetallics ”, Vol.17, p.1501, 1995.
[ 66]. C. L. White, R. A. Padgett, C. T. Liu and S. M. Yalisove, “Surface and Grain Boundary Segregation in Relation to Intergranular Fracture:Boron and Sulfur in Ni3Al”, Scripta Metall., Vol.18, pp.1417-1419, 1984.
[ 67]. W.C.Oliver, “In High-temperature Ordered Intermetallic Alloys Ⅲ”, MRS Conf.Proc., Vol.133, Materials research Society, Pittsburgh, pp.397-402, 1989.
[ 68]. W.C.Oliver and C.L.White, “The Segregation of Boron and Its Effect on the Fracture of an Ni3Si Based Alloy”, High Temperature Ordered Intermetallic Alloy”, High Temperature Ordered Intermetallic AlloysⅡ, eds. N.S.Stoloff, C.C.Koch, C.T.Liu and O.Izumi, Materials Research Society, pp.241-250, 1987.
[ 69]. Szu-ko Wang, “A study on the Microstructure Evolution and Mechanical Behaviors of the Ni-19Si-3Nb Based Intermetallic Alloys Doped with Boron or Carbon by using Microalloying Methods”, ISU, 1998.
[ 70]. N.Masahashi, T.Takasugi and O.Izumi, “Mechanical properties of Ni3Al C, B, and Be”, Acta Metall., Vol.36, No.7, pp.1823-1833, 1988.
[ 71]. E.M.Schulson, Proposal to Dffice of Basic Energy Sciences, U.S. Department of Energy contract no. DEFG 02-86 ER 45260.
[ 72]. T.B.Massalski, J.L.Murray, L.H.Bennett & H.Baker ASM, Metals Park ohio, “Binary Alloy Phase Diagram for Ni-Si- ally” , p.1756, 1986.
[ 73]. J.C.Ou, “Stady on the Microstructure Evolution and Mechanical Behaviors of the Ni-19Si-3Nb Based Intermallie Alloys Doped with Boron and Carbon by using Microalloying Methods” , 2000.
[ 74]. T.B.Massalski, J.L.Murray, L.H.Bennet & H.Baker ASM, Metals Park Ohio. “Binary Alloy Phase Diagram for Nb-Ni alloy”, p.1682, 1986.
[ 75]. T.B.Massalski, J.L.Murray, L.H.Bennet & H.Baker ASM, Metals Park Ohio. “Binary Alloy Phase Diagram for Nb-Si alloy”, p.1696, 1986.
[ 76]. Handbook of Temary Alloy Phase Diagrams, p.12796, 1986.
[ 77]. Pierre Villars, Alan Prince, H. Okamoto, Handbook of Temary Alloy Phase Diagrams, ASM International, p.12796, 1986.
[ 78]. 金屬材料機械性能測試工業技術研究院、工業材料研究所,1993.
[ 79]. 材料分析、中國材料科學學院,1996。
[ 80]. K.K.Chawla and Meyers, “Mechanical Behavior of Materials” , pp.526-535, 1999.
[ 81]. E.D.George, “Mechanical Metallurgy” 3rd ed., pp. 310-314, 1988.
[ 82]. H.Conrad, and J.Metals., vol.16 pp. 582-885, 1964.
[ 83]. E.Reed-Hill Robert, “Physical Metallurgy Principles” 3rd ed., p. 867, 1994.
[ 84]. H. Conrad and H. Wiedersich, “Order from Infotrieve.”, Acta Met.,Vol. 8, p. 128, 1960.
[ 85]. C. T. Liu and C. L. White, Acta Metall., 35, p.643, 1987.
[ 86]. T. Takasugi, E. P. George, D. P. Pope and O. Izumi,“Intergranular Fracture aes NiAl NiSi Boundary” , Scripta Metall., Vol.19, pp.551-557, 1985.
[ 87]. R. P. Messmer and C. L. Briant:Acta Metall., Vol.30, p.547, 1982.
[ 88]. ASTM E8-04, “Standard Test Methods for Tension Testing of Metallic Materials1”, p.7, 2005.
[ 89]. 周安琪,張士欽編著,實驗材料學,文京,台北,1978。
[ 90]. ASM, “Metal Handbook” 9th ed., Vol.8, pp.70-113, 1985.
[ 91]. J. S. C. Jang, S. K. Wong, and G. Y. Chen, “The effect of Heat-treatment on the Microstructure and Mechanical Properties of the Ni-19Si-3Nb-0.15B Intermetallic Alloy”,中國材料科學學會87年年會論文集, p.21, 1998。
[ 92]. 陳泊豪,應變速率及環境對添加硼與鉻元素之鎳矽基介金屬合金機械行為之影響,義守大學材料科學與工程學系研究所碩士論文,2003。
[ 93]. Meyers, Marc Andre′and Chawla and Krishan Kumar, “Mechanical Metallurgy principles and Application” , Prentice –Hall, Inc, 1984.
[ 94]. Meyers Chawla, “Mechanical Behavior of Materials” , Prentice-Hall International, Inc., New Jersey, pp.526-529, 1999.
[ 95]. J.H. Zhu and C.T. Liu, “Intermediate-temperature mechanical properties of Ni-Si alloys: oxygen embrittlement and its remedies” , Intermetallics, Vol.10, pp.309-316, 2002.
[ 96]. Robert E. Reed-Hill, “Physical Metallurgy Principles” , PWS PUBLISHING COMPANY, Boston, 1994.
[ 97]. L.M. Pike and C.T. Liu, ENVIRONMENTAL EFFECTS ON THE TENSILE PROPERTIES OF TWO Ni3Si-BASED ALLOYS, Scripta mater, pp.265–270, 2000.
[ 98]. Ulrich Krupp, William Kane, Jeffrey A. Pfaendtner, Xinyu Liu Campbell Laird and Charles J. McMahon Jr., “Oxygen-Induced Intergranular Fracture of the Nickel-Base Alloy IN718 during Mechanical Loading at High Temperatures” , Materials Research, Vol. 7, No. 1, pp.35-41, 2004.
[ 99]. Jason S. C. Jang and L. J. Chang “Effect of Carbon and Boron on the Precipitate Microstructure and Mechanical Behavior of the Ni-19Si-3Nb Based Alloy” , Intermetllics 10, pp.967-977, 2002.
[100]. A. B. Tanner, R. D. McGinty and David L. McDowell, “Modeling temperature and strain rate history effects in OFHC Cu” , International Journal of Plasticity, Vol.15, pp.573-603, 1999.
[101]. M.Singh, H. R. Suneja, M. S. Bola and S. Prakash, “Dynamic tensile deformation and fracture of metal cylinders at high strain rates” , International Journal of Impact Engineering, Vol. 27, pp. 939-954, 2002.
[102]. M. Zaiser, “The influence of strain rate fluctuations on the stability of low-temperature plastic defomation.” , Acta Metall. Mater., Vol. 45, No.4, pp. 1695-1704, 1997.
[103]. K.K.Chawla,and Meyers “Mechanical Metallurgy principles and Application” , Prentice-Hall,Inc, 1984.
[104]. Jason S.C.Jang, C.Y Cheng and Szu-Ko Wang, “The effect of carbon microalloying on the microstructure and mechanical properties of a nickel silicide-based alloy” , Materials Chemistry and Physics 9039, pp.1-6, 2001.
[105]. Jason S.C.Jang ,C.J Ou and C.Y Cheng, “The evolution of microstructure change and mechanical properties for a nickel silicide based alloy doped with carbon and boron ” , Materials Science and Engineering A000, pp. 000-000, 2001.
[106]. Jason S.C.Jang, H.R. Wong,L.J Chang and S.J. Wong, “Effects of environment and temperature on the mechanical behavior of the Ni-19Si-3Nb intermetallic alloy doped with boron and carbon ” , Intermetallics 12, pp.945-950, 2004.
[107]. Jason S.C.Jang, S.P.Cheng,J.C.Fwu and L.J Chang , “Effects of environment and temperature on the mechanical behavior of the Ni-19Si-3Nb-0.15B based intermetallic alloy with chromium addition” , Materials Chemistry and Physics MAC 10273, pp. 1-8, 2004.
[108]. 鍾志明,添加硼及鉻對鎳矽基介金屬合金顯微結構及機械行為之影響,義守大學材料科學與工程學系研究所碩士論文,2004。
[109]. 符志強,應變率及環境對添加硼與碳元素之鎳矽基介金屬合金機械行為之影響,義守大學材料科學與工程學系研究所碩士論文,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top