跳到主要內容

臺灣博碩士論文加值系統

(44.192.25.113) 您好!臺灣時間:2022/05/16 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡燿先
論文名稱:探討脯氨酸和通氣量對於液態醱酵培養樟芝多醣體及其生物活性測定之研究
論文名稱(外文):The influence of L-Proline and aeration rate on polysaccharide fermentation from Antrodia camphorata by submerged culture and its biological activity
指導教授:龍明有
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:188
中文關鍵詞:樟芝多醣體脯氨酸通氣量二階段醱酵培養細胞激素測定
外文關鍵詞:Antrodia camphoratapolysaccharideL-Prolineaeration ratetwo-stage culture strategycytokine assay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樟芝屬於無褶菌目、多孔菌科,據文獻指出具有抗癌、抗腫瘤及保肝之效果。樟芝的有效活性物質包含固醇類、三帖類、多醣體等。由於野生樟芝只寄生在台灣特有的牛樟樹上,不但數量少之又少,而且品質不穩定,所以近年來樟芝已被利用液態醱酵培養以達大量生產的目的。本研究探討脯氨酸和通氣量對於液態醱酵培養樟芝多醣體之影響,進而利用二階段批次醱酵之調控以達增加多醣體產量之目的,此外並利用巨噬細胞之體外測試(in vitro),分析樟芝多醣體的抗腫瘤生物活性,評估其提升免疫能力的效果。本實驗所使用的樟芝菌株購自新竹食品工業研究所,編號為BCRC 35396。
搖瓶培養:不同氨基酸(精氨酸、麩氨醯酸、異白氨酸、離氨酸、脯氨酸、酥氨酸)在0.3%濃度之下對樟芝液態培養生物質量(biomass)及胞外多醣體(EPS)之影響。實驗結果顯示,離氨酸和脯氨酸分別有利於樟芝菌絲體生物質量及胞外多醣體之生合成,而使生物質量和胞外多醣體產量增加,分別為2.97g L-1 和 218.64mg L-1。進ㄧ步實驗,利用不同初始濃度脯氨酸(0.3%、0.6%、0.9%、1.2%、1.5%)之條件研究對樟芝液態培養生物質量和胞外多醣體之影響,控制組為0% 濃度脯氨酸。實驗結果顯示,樟芝生物質量和胞外多醣體之生合成隨著脯氨酸濃度增加而增加,在1.5%脯氨酸時,其生物質量之最大值為3.85g L-1;胞外多醣體產量則隨脯氨酸濃度上升而增加,直到脯氨酸濃度到達1.2%為止,其最大胞外多醣體產量為247.12mg L-1。
攪拌式醱酵槽培養:不同初始濃度脯氨酸對樟芝液態培養生物質量和多醣體產量之影響。批次醱酵實驗結果顯示在0.3%脯氨酸下有一比生長速率最大值(0.29d-1);而在 0.9%脯氨酸時,可得生物質量、胞外多醣體、胞內多醣體(IPS)及胞內多醣體內含量(IPS content;mg IPS / g Biomass)最大值分別為 6.57g L-1、204.32g L-1、308.33g L-1和47.15mg g-1。此外,為考慮氧氣對樟芝液態醱酵培養的影響,於是利用不同通氣量(0.2vvm、0.4vvm、0.6vvm、0.8vvm、1.0vvm、1.2vvm)來探討對樟芝液態培養生物質量和多醣體產量的影響。批次醱酵實驗結果顯示在 通氣量0.2vvm之下,有最大胞外多醣體產量為188.65mg L-1;而在通氣量在1.2vvm 時,有最大生物質量產量、最大胞內多醣體產量及最大胞內多醣體內含量分別為5.89g L-1、289.98mg L-1和50.00mg g-1 。為了增加樟芝生物質量和多醣體產量,本研究亦進行二階段批次醱酵培養(添加0.9%脯氨酸培養基於醱酵槽中培養,伴隨前期操作通氣量為1.2vvm以利幫助菌體成長,待菌體成長至一定階段後,於醱酵中期第9天降低操作通氣量至0.2vvm以促進產物多醣體的生成增加),實驗結果顯示生物質量、胞外多醣體、胞內多醣體及胞內多醣體內含量為 6.98g L-1、255.19g L-1、381.23g L-1 和55.65mg g-1,其中二階段批次醱酵之胞外多醣體產量(255.19g L-1)較0.9%脯氨酸醱酵之胞外多醣體產量(204.32g L-1)增加了24%;較通氣量為0.2vvm 醱酵之胞外多醣體產量(188.65mg L-1)增加了35%。
利用凝膠過濾管柱層析法分離純化樟芝粗多醣體,可得純化的二區分(fraction-1和fraction-2)。接著進行樟芝多醣體與蛋白質含量比分析,實驗結果顯示,二階段批次醱酵培養之樟芝多醣體與蛋白質含量比(胞外多醣體fraction-1:20.78% 和 胞內多醣體:38.69%)比各批次醱酵之含量比相對較高。在樟芝胞外多醣體分子量分析中,實驗結果顯示二階段批次醱酵培養之分子量 (fraction-1:1.24×106 Da)較各批次醱酵培養之分子量高;對於在胞內多醣體分子量分析,二階段批次醱酵之胞內多醣體分子量 (3.30×105 Da)也是比各批次醱酵相對稍高。在樟芝多醣體之中性單醣成分及組成分析顯示,無論是二階段批次醱酵或是各批次醱酵之單糖組成都是以葡萄糖、木糖、半乳糖單醣為主;但是組成比例卻幾乎不變,可以推論得知脯氨酸效應、氧氣質傳和二階段醱酵培養雖然會改變多醣體代謝機制,然而對多醣體本身的組成而言並不會造成影響。
對於樟芝液態醱酵培養之多醣體的生物活性評估(巨噬細胞激素測定),從實驗結果發現生物活性(murine tumor necrosis factor-alpha concentration, mTNF-α conc.)與分子量成正比關係,多醣體分子量越大則生物活性效果越好。綜觀來說,由於二階段批次醱酵所得之樟芝胞外多醣體的分子量較大,因此其胞外多醣體之生物活性(fraction-1:1779.91 ± 46.52pg/mL和fraction-2:544.93 ± 44.39pg/mL)比各批次醱酵胞外多醣體之生物活性相對較好;同時二階段批次醱酵胞內多醣體之生物活性(567.42 ± 50.83pg/mL)也是比各批次醱酵胞內多醣體之生物活性相對稍好。此外,樟芝多醣體與蛋白質含量比結果以多醣體的生物活性成正比,多醣體與蛋白質含量比愈高則生物活性效果愈好。
Antrodia camphorata (Zang-Zhi) belongs to the aphyllophorales and the poly -poracease family with the effect of remedy for anticancer, antitumor and protection of the liver. Some bioactive compounds of A. camphorata including sesquiterpene lactone, steroids, triterpenoids have been isolated and characterized. Wild A. camphorata parasitizes specifically on Cinnamomum kanehirai hays in a small quantity and its quality is not stable. In recent years, A. camphorata was attempted to be produced on large scale by submerged culture. The main purpose of this research was to investigate the influence of L-Proline and aeration rate on polysaccharide fermentation by submerged culture of A. camphorata, and to increase production of exopolysaccharide (EPS) by regulating two-stage culture strategy. Moreover, the biological activity of polysaccharides from A. camphorate was examined by using TNF-α release capability of polysaccharides on a murine macrophage cell line, RAW264.7. A. camphorata BCRC 35396 was obtained from the Bioresources Collection and Research Center (BCRC) in Food Industry Research and Development Institute (Hsin chu, ROC).
The effects of the different amino acids at 3g/L of (i.e., L-Arginine, L-Glutamine, L-Isoleucine, L-Lysine, L-Proline, and L-Threonine) on production of biomass and EPS were conducted in this study. The result exhibited that L-Lysine and L-Proline stimulated biomass (2.97g L-1) and EPS (218.64mg L-1) production, respectively. In addition, the effects of various concentrations of L-Proline (i.e., 3, 6, 9, 12, 15 g/L) on biomass and EPS production of A. camphorata were conducted in shake-flask cultures. Comparing with controlled 0 g/L of L-Proline, the biomass production increased with L-Proline concentration ranging from 3 to 15 g/L. The optimal biomass concentration was reached to 3.85 g/L as L-Proline concentration was at 15 g/L, and the optimal EPS concentration was reached to 247.12 mg L-1 as L-Proline concentration was at 12 g/L.
The effects of different L-Proline concentration (i.e., 3, 6, 9, 12, 15 g/L) on biomass and EPS production of A. camphorata by submerged culture were conducted in stirred-tank fermentor. The maximal value of the specific growth rate (μ) was 0.29 d-1 at 0.3% L-Proline. At 9g/L of L-Proline, the maximum values were 6.57 g L-1, 204.32 g L-1, 308.33 g L-1, and 47 mg g-1 for biomass, EPS, endopolysaccharide (IPS), and IPS content production, respectively. In addition, the effects of the aeration rates (i.e., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 vvm) on production of biomass and EPS of A. camphorata by submerged culture were also conducted in stirred-tank fermentor in this study. Controlled with aeration of 0.2 vvm, the maximum value was 188.65mg L-1 for EPS production ; controlled with aeration of 1.2 vvm, the maximum values were 5.89g L-1, 289.98mg L-1, and 50.00mg L-1 for biomass, IPS, and IPS content production, respectively. In order to improve the A. camphorata production, the two-stage culture strategy was used. The productions were reached to 6.98g L-1, 255.19g L-1, 381.23g L-1, and 55.65mg g-1 for biomass, EPS, IPS, and IPS content, respectively.
The crude EPS from submerged culture of A. camphorata was purified by using Silica gel 60 column chromatography, where two EPS peaks were eluted. The protein to polysaccharide ratios from A. camphorata by regulating two-stage culture strategy (fraction-1 of EPS:20.78% ; IPS:38.69%) were superior those of batch cultures in 9g/L L-Proline, aeration rates of 0.2vvm and 1.2vvm. The molecular weight of EPS by regulating two-stage culture strategy (1.24×106 Da of EPS in fraction-1) was higher than those by two the other cultures (i.e., culture in 9g/L L-Proline, aeration rates of 0.2vvm and 1.2vvm), and the similar result was observed in the molecular weight of IPS (3.30×105Da) from regulating two-stage culture strategy. The carbohydrate compositions of polysaccharide produced from A. camphrata consisted of glucose, xylose, and galactose ; the percentages of monosaccharide compositions from polysaccharides in each fraction were almost constant. The results indicate that the monosaccharide compositions were not changed with culture conditions including of L-Proline effect, oxygen transfer, and two-stage culture strategy used in this study.
The results of biological activities (cytokine assay) of polysaccharide from A. camphorata were directly proportion to molecular weight of polysaccharide from A. camphorata. The higher molecular weight of polysaccharide was, the more murine tumor necrosis factor-alpha (mTNF-α) concentration was achieved. The maximal mTNF-α concentration values for EPS in fraction-1, EPS in fraction-2, and IPS were 1779.91 ± 46.52 pg/mL, 544.93 ± 44.39 pg/mL, 567.42 ± 50.83 pg/mL, respectively. Besides, the protein to polysaccharide ratio was closely correlated with the biological activity of polysaccharide from A. camphorata. The higher protein to polysaccharide ratio was, the more mTNF-α concentration was obtained.
中文摘要 ---------------------------------------------------------------------------------- I
英文摘要 -------------------------------------------------------------------------------- IV
誌謝 ------------------------------------------------------------------------------------- VII
目錄 ------------------------------------------------------------------------------------ VIII
圖次索引 ------------------------------------------------------------------------------ XIV
表次索引 ------------------------------------------------------------------------------ XXI
第一章 緒論 ----------------------------------------------------------------------------- 1
1.1 研究動機與背景 --------------------------------------------------------------- 1
1.2 研究目的 ------------------------------------------------------------------------ 4
第二章 文獻回顧 ----------------------------------------------------------------------- 5
2.1真菌菇類介紹 ------------------------------------------------------------------- 5
2.1.1 真菌菇類的抗腫瘤與免疫調節活性 -------------------------------- 6
2.1.2 真菌菇類的生理活性成分 -------------------------------------------- 6
2.2 真菌多醣體介紹 --------------------------------------------------------------- 8
2.2.1 真菌多醣體之特性 ----------------------------------------------------- 8
2.2.2 真菌多醣體之生合成 ------------------------------------------------- 10
2.2.3 真菌多醣體之機能性 ------------------------------------------------- 12
2.3 巨噬細胞與真菌多醣體 ---------------------------------------------------- 15
2.3.1 巨噬細胞與其功能 --------------------------------------------------- 15
2.3.2 巨噬細胞吞噬能力 --------------------------------------------------- 17
2.3.3 多醣體抗腫瘤生物活性之巨噬細胞實驗 ------------------------ 17
2.4 樟芝介紹 ---------------------------------------------------------------------- 18
2.4.1 樟芝多醣體 ------------------------------------------------------------- 20
2.4.2 樟芝化學成分組成 ---------------------------------------------------- 21
2.4.3 樟芝藥理特性 ---------------------------------------------------------- 21
2.5 深層醱酵培養 ---------------------------------------------------------------- 24
2.5.1 影響醱酵的物理因子 ------------------------------------------------- 24
2.5.2 影響醱酵的化學因子 ------------------------------------------------- 29
2.6 氨基酸簡介 ------------------------------------------------------------------- 32
2.6.1 精氨酸;筋氨酸(L-Arginine) ----------------------------------------- 32
2.6.2 麩氨醯酸(L-Glutamine) ----------------------------------------------- 32
2.6.3 異白氨酸(L-Isoleucine) ----------------------------------------------- 33
2.6.4 離氨酸;2,6-二氨己酸(L-Lysine) ------------------------------------ 33
2.6.5 脯氨酸;口比咯口定甲酸(L-Proline) ------------------------------- 34
2.6.6 酥氨酸;羥丁氨酸(L-Threonine) ------------------------------------- 35
    2.7 多醣體之分離與純化 ------------------------------------------------------- 37
2.7.1 透析法 ------------------------------------------------------------------- 37
2.7.2 酒精沉澱法 ------------------------------------------------------------- 37
2.7.3 冷凍離心法 ------------------------------------------------------------- 37
2.7.4 層析法 ------------------------------------------------------------------- 37
2.7.4.1 離子交換管柱層析 ------------------------------------------- 38
2.7.4.2 疏水性作用管柱層析 ---------------------------------------- 40
2.7.4.3 親和性作用管柱層析 ---------------------------------------- 41
2.7.4.4 膠體過濾管柱層析 ------------------------------------------- 41
第三章 材料與方法-------------------------------------------------------------------- 43
3.1 實驗架構 ---------------------------------------------------------------------- 43
3.2 實驗材料 ---------------------------------------------------------------------- 44
3.2.1 樟芝實驗菌株 ---------------------------------------------------------- 44
3.2.2 實驗藥品 ---------------------------------------------------------------- 44
3.2.3 實驗儀器及設備 ------------------------------------------------------- 46
3.2.4 實驗裝置 ---------------------------------------------------------------- 48
3.3 實驗方法 ---------------------------------------------------------------------- 55
3.3.1 菌株保存 ---------------------------------------------------------------- 55
3.3.2 培養基成分 ------------------------------------------------------------- 55
3.3.3 操作條件 ---------------------------------------------------------------- 57
3.4 分析方法 ---------------------------------------------------------------------- 59
3.4.1 醱酵產物分析流程 ---------------------------------------------------- 59
3.4.2 菌體乾重測定(Mycelial growth weight,X) ------------------------ 60
3.4.3 粗多醣體濃度分析(Polysaccharide concentration,P) ------------ 60
3.4.4 葡萄糖濃度分析(Residual glucose concentration,S) ------------- 62
3.4.5 脯氨酸濃度分析 ------------------------------------------------------- 64
3.4.6 菌絲球粒徑測定 ------------------------------------------------------- 65
3.4.7 管柱層析與分離純化 ------------------------------------------------- 66
3.4.8 萃取醱酵產物胞內多醣體之製備 ---------------------------------- 67
3.4.8.1 醱酵產物 --------------------------------------------------------- 67
3.4.8.2 製備流程 --------------------------------------------------------- 67
3.4.9 蛋白質含量分析 ------------------------------------------------------- 68
3.4.10 多醣體分子量分析 -------------------------------------------------- 68
3.4.11 多醣體之中性單醣組成分析 -------------------------------------- 69
3.4.12 多醣體之生物活性測定 -------------------------------------------- 71
3.4.12.1 巨噬細胞株 ---------------------------------------------------- 71
3.4.12.2 巨噬細胞株培養液組成 ------------------------------------- 71
3.4.12.3 巨噬細胞株保存 ---------------------------------------------- 71
3.4.12.4 巨噬細胞株解凍 ---------------------------------------------- 72
3.4.12.5 巨噬細胞株繼代培養 ---------------------------------------- 72
3.4.12.6 巨噬細胞激素測定實驗流程 ------------------------------- 72
第四章 結果與討論 ------------------------------------------------------------------- 75
4.1 樟芝菌絲型態 ---------------------------------------------------------------- 75
4.1.1 固態培養 ---------------------------------------------------------------- 75
4.1.2 搖瓶培養 ---------------------------------------------------------------- 77
4.1.3 攪拌式醱酵槽培養 ---------------------------------------------------- 78
4.2 樟芝搖瓶培養實驗 ---------------------------------------------------------- 79
4.2.1 不同氨基酸培養基對於培養樟芝菌體產量之影響 ------------- 79
4.2.1.1 不同氨基酸對樟芝培養生物質量和胞外多醣體
產量的影響 ---------------------------------------------------- 79
4.2.1.2 不同氨基酸對樟芝轉化率胞外YP/X、YX/S 和YP/S
的影響 ---------------------------------------------------------- 82
4.2.2 不同初始濃度脯氨酸培養基對於培養樟芝菌體產量
之影響 ----------------------------------------------------------------- 86
4.2.2.1 不同初始濃度脯氨酸對樟芝培養生物質量和
胞外多醣體產量的影響 ------------------------------------- 86
4.2.2.3 不同初始濃度脯氨酸對樟芝轉化率胞外YP/X、YX/S
和YP/S 的影響 ------------------------------------------------- 88
4.3 樟芝醱酵槽培養實驗 ------------------------------------------------------- 91
4.3.1 不同初始濃度脯氨酸於攪拌式醱酵槽培養之影響 ------------- 91
4.3.1.1 不同初始濃度脯氨酸對樟芝培養生物質量產量
的影響 ----------------------------------------------------------- 95
4.3.1.2 不同初始濃度脯氨酸對μ、QX和YX/S的影響 --------------- 96

4.3.1.3 不同初始濃度脯氨酸對樟芝培養胞外多醣體產量
的影響 ---------------------------------------------------------- 97
4.3.1.4 不同初始濃度脯氨酸對胞外QP、YP/X和YP/S
的影響 ---------------------------------------------------------- 98
4.3.1.5 不同初始濃度脯氨酸對樟芝培養胞內多醣體產量
和胞內多醣體內含量的影響 ------------------------------- 99
4.3.1.6 不同初始濃度脯氨酸對胞內QP、YP/X和YP/S
的影響 -------------------------------------------------------- 104
4.3.1.7 不同初始濃度脯氨酸對樟芝菌絲球粒徑的影響 ------- 105
4.3.2 不同通氣量於攪拌式醱酵槽培養之影響 ----------------------- 106
4.3.2.1 不同通氣量對樟芝培養生物質量產量的影響 ---------- 111
4.3.2.2 不同通氣量對μ、QX和YX/S的影響 -------------------------- 111
4.3.2.3 不同通氣量對樟芝培養胞外多醣體產量的影響 ------- 113
4.3.2.4 不同通氣量對胞外QP、YP/X和YP/S 的影響 ---------------- 114
4.3.2.5 不同通氣量對樟芝培養胞內多醣體產量和胞內
多醣體內含量的影響 -------------------------------------- 115
4.3.2.6 不同通氣量對胞內QP、YP/X和YP/S 的影響 ---------------- 121
4.3.2.7 不同通氣量對樟芝菌絲球粒徑的影響 ------------------- 122
4.3.3 ¬二階段不同通氣量和脯氨酸操作於攪拌式醱酵槽
培養之影響 -------------------------------------------------------- 123
4.3.3.1 二階段不同通氣量和脯氨酸操作對樟芝培養
胞外多醣體產量、QP、YP/X和YP/S的影響 ---------------- 125
4.3.3.2 二階段不同通氣量和脯氨酸操作對樟芝培養胞內
多醣體產量、多醣體內含量、QP、YP/X和YP/S
的影響 -------------------------------------------------------- 126
4.3.3.3 二階段不同通氣量和脯氨酸操作對樟芝培養
生物質量、μ、QX和YX/S的影響 ---------------------------- 127
4.4 樟芝粗多醣體分離純化結果 --------------------------------------------- 129
4.4.1 不同初始濃度脯氨酸對樟芝胞外粗多醣體純化
之分布 ---------------------------------------------------------------- 129
4.4.2 不同通氣量對樟芝胞外粗多醣體純化之分布 ----------------- 133
4.4.3 二階段不同通氣量和脯氨酸操作對樟芝胞外
粗多醣體純化之分布 ---------------------------------------------- 136
4.5 樟芝多醣體與蛋白質含量影響 ------------------------------------------ 138
4.5.1 樟芝胞外多醣體與蛋白質含量之分析 -------------------------- 138
4.5.2 樟芝胞內多醣體與蛋白質含量之分析 -------------------------- 141
4.6 樟芝多醣體分子量分布影響 --------------------------------------------- 144
4.6.1 樟芝胞外多醣體分子量分布之分析 ----------------------------- 145
4.6.2 樟芝胞內多醣體分子量分布之分析 ----------------------------- 149
4.7 樟芝多醣體之中性單醣成分組成影響 --------------------------------- 152
4.7.1 樟芝胞外多醣體之中性單醣成分之組成分析 ----------------- 153
4.7.2 樟芝胞內多醣體之中性單醣成分之組成分析 ----------------- 156
4.8 樟芝多醣體之生物活性測定影響 --------------------------------------- 158
4.8.1 巨噬細胞之型態 ----------------------------------------------------- 158
4.8.2 樟芝胞外多醣體之生物活性測定之分析 ---------------------- 160
4.8.3 樟芝胞內多醣體之生物活性測定之分析 ---------------------- 165
第五章 結論與建議 ----------------------------------------------------------------- 170
5.1 結論 --------------------------------------------------------------------------- 170
5.2 建議 --------------------------------------------------------------------------- 172
參考文獻 ------------------------------------------------------------------------------- 173
作者簡介 ------------------------------------------------------------------------------- 188
1. 何師竹,“防治癌症大指導”,2003,大康出版社。
2. 水野卓、川合正允,“菇類的化學,生化學”,1997,賴慶亮譯,國立編譯館。
3. 卯曉嵐,“中國的食用和和藥用大型真菌”,微生物學通報,1989,216,290-297。
4. 張東柱、周文能,“野菇入門”,2005,遠通出版事業股份有限公司。
5. 張景泓,“大蒜精油及大蒜有機硫成份-二烯丙基硫化物、二烯丙基二硫化物、二烯丙基三硫化物-抑制巨噬細胞RAW 264.7 iNOS 表現之探討”,2002,中山醫學大學營養科學研究所碩士論文。
6. 張志豐,“深層培養松茸(Tricholoma matsutake)之最適化培養液組成”, 2004,大同大學生物工程研究所碩士論文。
7. 王伯徹、邱世浩、黃仁彰,“食用菇保健食品專輯”,1998,食品工業,30,1-36。
8. 王伯徹,“認識食藥用菇”,1990,食品工業, 24,8-15。
9. 王伯徹,“具開發潛力食藥用菇介紹”,2000,食品工業,,32,1-17。
10. 王聖予、李麗俐、陳慧玲、馮潤蘭、湯志元、謝國珍編譯,“免疫學”,1996,藝軒出版社。
11. 王伯徹、黃仁彰,“靈芝與樟芝之研發與市場面面觀”,2002,食品工業,34(5),3-17。
12. 王仁澤、王健行、林大楨,“毒物化學及實驗”,1998,高立圖書出版。
13. 王丹雲、蔡永昌,“乙級化學學術科徹底研究”,2003,臺科大圖書出版。
14. 丁懷謙,“食藥用菇多醣體之免疫生理活性”,2000,食品工業,32,28-42。
15. 陳清農、高炳煌、楊梅春、陳勁初,“台灣森林中的紅寶石樟芝鄉間小路”,1999a,1,22。
16. 陳清農、陳勁初、張基煌、喬長誠,“樟芝揮發性成分之研究”,1999b,中華民國食品科學技術學會第二十九次會員大會論文摘要。
17. 陳勁初、呂鋒洲,“靈芝之王:台灣樟芝”,2001,元氣齋出版社。
18. 陳怡倩,“利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影
響之研究”,2001,國立中央大學化學工程研究所碩士論文。
19. 陳雯賢,”不同碳源對樟芝亦太醱酵培養生產菌絲體及胞外多醣之影響”,2006,明新科技大學動物學研究所碩士論文。
20. 白壽雄、羅道蘊,“生物性多醣體及其應用”,1994,生物產業,5,167-173。
21. 林家如,“浸液醱酵培養基與培養條件對藥用真菌茯苓菌絲體及胞外多醣體生成之影響”,2002,大葉大學食品工程研究所碩士論文。
22. 林克融,“探討培養基之pH 值與Xanthan gum 的添加對巴西蘑菇多醣體生產之影響”,2002,中央大學化學工程與材料工程研究所碩士論文。
23. 林欣穎,”裂褶菌多醣體的濃度分析及其小白鼠之抗氧化活性測試”,2002,國立台灣大學動物學研究所碩士論文。
24. 林志成,“探討通氣量對於樟芝醱酵生產與純化脂解酵素之研究”,2004,國立中央大學化學工程所碩士論文。
25. 康名慰,“香菇菌種之胞外水溶性多醣體分析”,2003,國立交通大學研究所碩士論文。
26. 黃鈴娟,“樟芝與姬松茸之抗氧化性質及其多醣組成分析”,1999,中興大學食品科學系研究所碩士論文。
27. 黃坤正、丁懷謙、余俊強、何漣漪,“基因毒理與動物病理組織之系統分析,依「食品新興製造系統整合及關鍵技術發四年計劃(第四年-91-度)”,2000,計劃標號:007051-04:3-12。
28. 汎可士企業有限公司提供照片,“FKS牛樟芝傳奇”。
29. 曹巧吟,“樟芝中免疫調節蛋白的純化與其生理活性之探討”,2003,國立台灣大學園藝學研究所碩士論文。
30. 蔡雁暉,“樟芝深層培養液及其多醣體之抗氧化特性”,2002,國立中興大學食品科學系碩士論文。
31. 蔡淑瑤,“靈芝與柳松菇之抗氧化性質和其對腫瘤細胞之毒性及柳松菇之抗致突變性質”,2002,國立中興大學食品科學所碩士論文。
32. 朱建儒,“探討通氣量於樟芝醱酵生產生物鹼之影響”,2003,中央大學化學工程與材料工程研究所碩士論文。
33. 李一宏,“樟芝菌絲體之培養及其多醣體抗乙型肝炎病毒活性評估”,2003,私立中國醫藥學院中國藥學研究所碩士論文。
34. 李靜宜,“酵素技術”,2006,明新科技大學化學工程研究所課程。
35. 楊書威,“中藥樟菇活性成分之研究”,國立台灣大學藥學研究所碩士論文,1991,台北台灣。
36. 許勝傑、鍾煒惠、陳勁初、蔡明憲、王聖耀、蔡慶龍,陳巧文,“大白鼠口服高劑量樟芝菌絲體之急性毒性試驗”,2001,中華保健食品學會第二屆第一次會員大會。
37. 楊芳鏘、楊明哲,“菌絲狀真菌之深層培養技術”,2001,化工技術,176-189。
38. 許英欽,“ 探討麩氨酸的添加和供氣量對液態醱酵生產裂褶菌多醣體之研究 ”,2002,國立中央大學化學工程所碩士論文。
39. 香川綾(監修),“四訂食品成分表”,1989,榮養大學出版部,181-184,日本東京。
40. 杜巍、李元瑞、袁靜,“食薬用菌多醣生物活性與鍵結的關係”,2002,中國食用菌,21(3),28-29。
41. 章靈華、蕭培根,“藥用真菌中生物活性多醣的研究進展”,1992,中草藥,23,95-99。
42. 沈雍智,“探討麩胺酸的添加對於液態發酵生產松杉靈芝菌多醣體和靈芝酸之研究”,2005,國立中央大學化學工程所碩士論文。
43. Adachi K., Nanba H., and Kuroda H., “Potentiantion of host-mediated antitumor activity in mice by beta-glucan obtained from Grifola frondosa(maitake).”, Chem. Pharm. Bull. (Tokyo), 1987, 35, 262-270.
44. Ala-Kokko L., Pihlajaniemi T., Myers J.C., Kivirikko, K.I., Savolainen, E.R., “Gene expression of type I, III and IV collagens in hepatic fibrosisinduced by dimethylnitrosamine in the rat. ” Biochem. J. 1987, 244, 75-9.
45. Abel G., Szollosi J., Chihara G., and Fachwt J., “Effet of lentinan and mannan on phagocytosis of flouorescent latex microbeads by mouse peritoneal macrophages: a flow cytometric study.”, Int. J. Immunopharmacol., 1989, 11, 615-621.
46. Arinaga S, Karimine N, Takamuku K, Nanbara S, Nagamatsu M, Ueo H, Akiyoshi T, “Ehanced production of interleukin 1 and tumor necrosis factor by peripherai monocytes after lentinan administration in patients with gastric carcinoma.”, Int. J. Immunooharmac, 1992, 14, 43-47.
47. Anderson P.M., Schroeder G., Skubitz K.M., “Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy.”, Cancer,1998, 83,1433-9.
48. Almanullah A., Tuttiett B., Nienow A., “Agitator speed and dissolved oxygen effects in xanthan fermentations.” Biotechnol. Bioeng, 1998, 57, 198-210.
49. Block G., Langseth L., “Antioxidant vitamins and disease prevention” , Food Technology, 1994, 48(7), 80-84.
50. Barton R.G.., “Immune-enhancing enteral formulas: are they beneficial in critically ill patients.”, Nutrition in Clinical Practice, 1997 April, 12, 51-62.
51. Buchman AL. “Glutamine: commercially essential or conditionally essential? A
critical appraisal of the human data.”, Am. J. Clin. Nutr. 2001, 74, 25-32.
52. Babitskaya V.G., Shcherba V.V., Puchkova T.A., Smirnov D.A., “Polysaccharides of Ganoderma lucidum : Factors Affecting Their Production.”, Applied Biochemistry and Microbiology, Vol. 41, No. 2, 2005, pp. 169–173.
53. Chain E.B., Gualandi G.., Morisi G.., “Aeration studies. IV. Aeration condition
In 3000-liter submerged fermentation with various microorganisms”, Biotechnology and Bioengineering, 1966, 8, 595-619.
54. Chang S.T., Miles P.G.., “Recent trends in word production of cultivated mushrooms”, Mushroom Journal, 1991, 503, 15-18.
55. Chen C.H., Yang S.W., Shen Y.C., “New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum.”, J. Nat.Prod., 1995, 58, 1655-1661.
56. Cherng I.H., Chiang H.C., “Three new triterpenoids from Antrodia cinnamomea.”, J. Natural Products, 1995, 58, 365-371.
57. Chen W.C., Hau D.M., Wang C.C., Lin I.H., Lee S.S., “Effects of Ganoderma lucidum and krestin on subset T-cell in spleen of γ-irradiated mice.”, AM. J. Chin. Med, 1995, 23, 289-298.
58. Chen Y.J., Shiao M.S., Lee S.S., Wang S.Y., “Effect of Cordyceps sinensis on the proliferation and differentation of human leukemic U937 cells.”, Life Sci, 1997, 60, 2349-2359.
59. Chen W.C., Hau D.M., Wang C.C., Lin I.H., Lee S.S., “Effect of Ganoderma lucidum and krestin on cellularimmunocompetece in gamma-ray-irradiated mice.”, Am. J. Chin. Med, 1999a, 123, 71-80.
60. Chen W.C., Hau D.M., Wang C.C., Lin I.H., Lee S.S., “Effect of Ganoderma lucidum and krestin on subset T-cell in spleen of g-irradiated mice”, Am. J. Chin. Med, 1999b, 123, 289-298.
61. Chen C.J., Lin W.H., Chen C.N., Sheu S.J., Huang S.J., Chen Y.L.. “Development of Antrodia camphorata mycelium with submerge culture.”, Fung. Sci, 2001, 16, 7-22.
62. Chang Y.W., Lu T.J., “Molecular characterization of polysaccharide in hot-water extracts of Ganoderma lucidum fruiting bodies.”, 2003, 4, 49-57.
63. Cheng J.J., Yang C.J., Cheng C.H., Wang Y.T., Huang N.K., Lu M.K., “Characterization and Functional Study of Antrodia camphorata Lipopolysaccharide.” J. of Agric. and Food Chemistry., 2005, 53, 469-474.
64. Cheng J.J., Huang N.K., Chang T.T., Wang D.L., Lu M.K., “Study for Anti -angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells.”, Life Sci. 2005, 76, 3029-3042.
65. Chen N.Y., Hsu T.H., Lin F.Y., Lai H.H., Wu J.Y., “Effects on cytokine- stimulating activities of EPS from Tremella mesenterica with various carbon sources”, Food Chemistry, 2006, 99, 92–97.
66. Chen C.C., Liu Y.W., Ker Y.B., Wu Y.Y., Lai Y.(Eric), Chyau C.C., Hseu T.H., Peng Y.(Robert), “Chemical Characterization and Anti-inflammatory Effect of Polysaccharides Fractionated from Submerge-Cultured Antrodia camphorata Mycelia.”, J. Agric. Food Chem., 2007, 55, 5007-5012.
67. Dosoretz G.., Chen H.C., Grethlein E., “Effect of oxygenation conditions on
submerged cultures of Phanerochaete chrysosporium.”, Applied Microbiology
Biotechnology. 1990, 34, 131-137.
68. Fruehauf J.P., Bonnard G.D., Herberman R.B., “The effect of letinan on production of interleukin-1 by human monocytes.”, Immunpharnacolog., 1982, 5, 65-74.
69. Forage R.G., Harrison D.E.F., Pitt. D.E., “Effect of environment on microbial
activity.”, Comprehensive Biotechnology. 1985, 1, 253-279.
70. Fasidi I.O., Jonathan S.G., “Growth Requirements of Volvariella esculenta (Mass)
Singer, a Nigerian edible mushroom.”, Chem. Mikrob Tednol. Lebenson, 1994,
516, 151 -155.
71. Garcia-Ochoa F., Gomez-Castro E., Santos V.E., “Oxygen transfer and uptake rates during xanthan gum production.”, Enzyme and Microbial Technology. 2000, 27, 680-690.
72. Humfeld H., “The production of mushroom mycelium Agaricus campestris in
submerged culture.”, Sci., 1948, 107, 133.
73. Huang L.C., Huang S.J. , Chen C.C., Mau J.L.., “Antioxidant properties of
Antrodia camphorata.”, 3rd International conference on Mushroom Biology and
Mushroom Product & AMGA’s 26th National Mushroom Industry conference,
1999, 12-16, Sydeny, Australia.
74. Hsu Y.C., Chang W.C., Hseu Y.T., Lee C.Y., Chen P.C., Chen J.Y., Yang H.L., “Protection of oxidative damage by aqueous extract from Antrodia Camphorata mycelia in normal human erythrocytes.”, Life Sciences, 2002, 71, 469-482.
75. Hwang H.J., Kim S.W., Choi J.W., Yun J.W., “Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190.”, Enzyme and Microbial Technology, 2003, 33, 309–319.
76. Hsu I.C., Chou P.F., Shu C.H., “Effects of morphology and oxygen supply on schizophyllan formation by Schizophyllum commune using a pellet size controlling bioreactor.”, J Chem Technol Biotechnol, 2005, 80,1383-1388.
77. Ito H., Shimura K., Itoh H., Kawade M., “Effects of coriolan, an antitumor polysaccharide, produced by Coriolus versicolor Iwade.”, Jpn. J. Pharmacol, 1997, 29, 953-957.
78. Ju L.K., Ho C.S., Shanahan J.F., “Effects of Carbon Dioxide on the Rheological Behavior and Oxygen Transfer in Submerged Penicillin Fermentations.”, Biotechnol. Bioeng. 1991, 38, 1223-1232.
79. Jonathan S.G., Fasidi I.O., “Effect of carbon, nitrogen and mineral sources on growth of Psathyerella atroumbonata (Pegler), a Nigerian edible mushroom”, Food Chemistry, 2001, 72, 479-483.
80. Jagodziñski P.P., Lewandowska M., Januchowski R., Franciszkiewicz K., Trzeciak W.H., “The effect of high molecular weight dextran sulfate on the production of interleukin-8 in monocyte cell culture.”, Biomed. Pharmacother, 2002, 56, 254-257.
81. Kojima T., Tabata. K., Itoh W., Yanaki T., “Molecular weight dependence of the antitumor activity of schizophyllan.”, Agric. Biol. Chem., 1986, 50, 231-232.
82. Kurakata Y., Sakagami H., Sato A., Kikuchi K., Takeda M., Asano K., Sato T., “Functional maturation of monocytes/macrophages induced by PSK subfractions.”, Anticancer Res., 1991,11, 1767-1772.
83. Kiho T., Shiose Y., Nagai K., Sakuahima M., and Ukai S., “polysaccharides in fungi. XXIX. Structumal features of two antitumor polysaccharides from the fruiting bodies of Armillariella tabescens.”, Chem. Pharm. Bull. (Tokyo), 1992, 40, 2212-2214.
84. Kahlos K., “The effects of some amino acids on growth and lipid production in Inonotus obliquus grown in vitro.”, Acta Biotechnologica, 1993, 14(2), 169-179.
85. Kang, A., Wang, Y., Harvey, L.M., McNeil B., “Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop.”, Bioprocess Engineering, 2000, 23, 69-74.
86. Kang A., Wang Y., Harvey L.M., McNeil B., “Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in airlift bioreactor with an internal loop.”, Bioprocess eng, 2000, 23, 69-74.
87. Kim D.H., Yang B.K., Jeong S.C., Park J.B., Cho S.P., Das S., Yun J.W., Song C.H., “Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus.”, Biotechnol. Lett, 2001, 23, 513-517.
88. Kim G.Y., Park H.S., Nam B.H., Lee S.J., Lee J.D., “Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk. & M.A. Curtis)Teng”, Bioresource Technology, 2003, 89, 81–87.
89. Lieu C.W., Lee S.S., Wang S.Y., “The effect of Ganoderma lucidum on induction of differentiation in leukemic U937 cells.”, Anticancer Res, 1992, 12, 1211-1215.
90. Lee S.S., Wei Y.H., Chen C.F., Wang S.Y., Chen K.Y. “Antitumor effects of Ganoderma lucidum.”, J. Chinese Med, 1995, 6, 1-12.
91. Lin W.H., Hung C.H., Hsu C.I., Lin J.Y., “Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis.”, J. Biol. Chem. 1997, 272, 20044-20028.
92. Liu F., Ooi V.E. C., Chang S.T., “Free radical scavenging activity of mushroom polysaccharide extracts.”, Life Sci., 1997, 60, 763-771.
93. Leung M.., Fung K., Choy Y., “The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes.”, Immunopharmacology, 1997, 35, 255-263.
94. Liu M.Q., Li J.Z., Kong F.Z., Lin J.Y., Gao Y., “Induction of immunomodulating cytokines by a new polysaccharide–peptide complex from culture mycelia of Lentinus edodes.”, Immunopharmacology, 1998, 40, 187–198.
95. Lieber C.S., “Prevention and treatment of liver fibrosis based on pathogenesis.”, Alcohol Clin. Exp. Res.1999, 23, 944-949.
96. Lee J.H., Kim J.H., Zhu I.H., Zhan X.B., Lee J.W., Shin D.H., Kim S.K., “Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans.”, Biotechnol. Lett, 2001, 23, 817-820.
97. Lee, I.H., R.L. Huang, C.T. Chen, H.C. Chen, W.C. Hsu, M.K. Lu. “Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects.”, FEMS Microbiol. Lett. 2002, 209, 63-67.
98. Liu, J.J., Huang T.S., Hsu M.L., Chen C.C., Lin W.S., Lu F.J., Chang. W.H.,
“Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action.” Toxicol. Appl. Pharmacol. 2004, 201, 186-193.
99. Lung M.Y., “Exopolysaccharide production and antioxidant property of Antrodia
camphorata in batch fermentation.”, National Central University, 2004, Doctor’s Thesis, Chungli, Taiwan.
100. Lung M.Y., Xu C.J., Shu C.H., “Effects of supplementation of succinic acid on the production and molecular weight distribution of exopolysaccharides by Antrodia camphorata in batch cultures.”, J Chem Technol Biotechnol, 2005, 80, 216-222.
101. Lin E.S., Wang C.C., Sung S.S., “Cultivating conditions influence lipase production by the edible Basidiomycete Antrodia cinnamomea in submerged culture”, Enzyme and Microbial Technology, 2006, 39, 98-102.
102. Lee W.Y., Park Y.K., Ahn J.K., Ka K.H., Park S.Y., “Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum.”, Enzyme and Microbial Technology, 2007, 40, 249–254.
103. Metz B., Kossen N.W.F., “The growth of molds in the form of pellets:Literature review.”, Biotechnol. Bioeng, 1977, 19, 781-799.
104. Murray R.K., Granner C.G.., Mayes, P.A., Rodwell V.W., “Harper’s Biochemistry.” Appleton and Lange, New York, 1990, 156-158.
105. Millet I., Ruddle N.H., “Different regulation of lymphototoxin(LT), lymphotoxin-β (LT-β), and TNF-α in murine T cell clones activated through the TCR.”, J. Immunol., 1994, 152, 4336-4346.
106. Mizuno T., Saito H., Nishitoba T., Kawagishi H. “Antitumor-active substances from mushroom.”, Food Rev. Int, 1995a,11, 23-61.
107. Mizuno T., Kinoshita T., Zhuang C., Ito H. ,Mayuzumi Y., “Antitumor-active heteroglycans from niohshimeji mushroom,Tricholoma giganteum.” Biosci. Biotechnol. Biochem. 1995b, 59, 568-71.
108. Mato J.M., Camara J., Fernandez de Paz J., Caballeria L., Coll S., Caballero A.,
Garcia-Buey L., Beltran J., Benita V., Caballeria J., Sola R.,Moreno-Otero R., Barrao F., Martin-Duce A., Correa J.A., Pares A., Barrao E., Garcia-Magaz I., Puerta J.L., Moreno J., Boissard G., Ortiz P., Rodes M.J. “S-adenosylmethionine in alcoholic liver cirrhosis: a randomized,placebo -controlled, double-blind, multicenter clinical trial.” J. Hepatol.1999, 30, 1081-1089.
109. Oyama Y., Yoshida T., Taguchi H., “The artificial cultivation of mycopphiza -forming basidiomycetes.”, Mushroom Science IX, 1974, 1, 719-732.
110. Osman E., OwenJ.S., Burroughs A.K. “Reviewarticle : S-adenosyl-L-methionine -a new therapeutic agent in liver disease”, Aliment Pharmacol Ther,1993, 7,21-28.
111. Oh J.Y., Cho E.J., Nam S.H., Choi J.W., Yun J.W., “Production of polysaccharide–peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala.”, Process Biochemistry, 2007, 42, 352-362.
112. Park J.P., Kim Y.M., Kim S.W., Hwang H.J., Cho Y.J., Lee Y.S., Song C.H., Yun J.W., “Effect of aeration rate on the mycelial morphology and exo-biopolymer production in Cordyceps militaris.”, Process Biochemistry, 2002, 37, 1257–1262.
113. Peters H.U.,Herbst H.,Hesselink P.G.M.,Lunsdort H.,Schumpe A.,Deckwer W. D., “The influence of agitation rate on Xanthan production by Xanthomonas campestris.”, Biotechnology and Bioengineering, 1989, 34, 1393-1397.
114. Rau U., Gura E., Olszewski E., Wagner F., “Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing.”, Journal of Industrial Microbiology, 1992, 9, 19-26.
115. Ryhanen L., Stenback F., Ala-Kokko L., Savolainen E.R., “The effect of malotilate on type III and type IV collagen, laminin and fibronectin metabolism in dimethylnitrosamine-induced liver fibrosis in the rat.”, J. Hepatol 1996, 24, 238-45.
116. Sone Y., Kakuta M., Misaki A., “Isolation and characterization of polysaccharides of Kikurage fruit body of Auricularia auricula-judae.”, Agr. Biol. Chem., 1978, 42, 417-425.
117. Smith. M.D., Ho. C.S., “The Effect of Dissolved Carbon Dioxide on Penicillin production: Mycelial Morphology.”, J. Biotechnol. 1985, 2, 347-363.
118. Sakagami H., Ikeda M., Konno K., “Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction,” Biochemical and Biophysical Research Communications, 1989, 162, 597-603.
119. Suzuki T., Ohno N., Saito K., Yadimae T., “Activation of the complement system by (1→3)-β-D-glucans having different degrees of branching and different ultrastructures.”, J. Pharmacobio-Dyn., 1992, 15, 277-285.
120. Sakagami H., Sugaya K., Utsumi A., Fujinaga S., Sato T., Takeda M. “Stimulation by PSK of interleukin-1 production by human peripheral blood mononuclear cells.”, Anticancer Res, 1993, 13, 671-675.
121. Su C.H., Sun C.S., Juan S.W., Hu C.H., Ke W.T., Sheu M.T., “Fungal mycelia as the source of chitin and polysaccharide and their applications as skin substitutes.”, Biomaterials., 1997, 18, 1169-1174.
122. Sia, G.M., Candlish, J.K., “Effect of shiitake (Lentinus edodes)extract on human neutrophils and the U937 monocytic cell line,” Phytother. Res., 1999, 13, 133-137.
123. Smitinont T., Tansakul C., Tanasupawat S., Keeratipibul K., Navarini L., Bosco L., Cescutti P., “Exopolysaccharide-producing lactic acid bacteria strains from traditional thai fermented foods:isolation, identification and exopolysaccharide characterization”, International Journal of Food Microbiology, 1999, 51, 105–111.
124. Sakagami H., Ikeda M., Konno K., “Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction.”, Biochem. Biophy. res. commun., 1989, 162, 597-603.
125. Schloerb P.R., “Immune-Enhancing Diets: Products, Components, and Their rationales.”, JPEN, 2001, 25(2), s3-s7.
126. Song T.Y., Yen G.C., “Antioxidant Properties of Antrodia camphorata in Submerged Culture.”, J. Agric. Food Chem., 2002, 50, 3322-3327.
127. Shu C.H., Chen Y.C., Hsu Y.C., “Effects of Citric Acid on Cell Growth and Schizophyllan in the Submerged Culture of Schizophyllum commune.”, J. Chin. Inst. Chem. Engrs. 2002, 33, 315-320.
128. Song T.Y., Yen G.C., “Antioxidant properties of Antrodia camphorata in submerged culture.”, J. Agric. Food Chem., 2002, 50, 3322-3327.
129. Sarangi I., Ghosh D., Bhutia S.K., Mallick S.K., Maiti T.K., “Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia - derived proteoglycans ”, International Immunopharmacology, 2006, 6, 1287–1297.
130. Shih I.L., Pan K., Hsieh C.Y., “Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged
culture of Antrodia cinnamomea.”, Process Biochemistry, 2006, 41, 1129-1135.
131. Shi Y., Sheng J.C., Yang F.M., Hu Q.H., “ Purification and identification of
polysaccharide derived from Chlorella pyrenoidosa.”, Food Chemistry, 2007, 101–105.
132. Tsuji A., Kinoshita T., Hoshino M., “Analytical chemical studies on amino sugar. Determinat Ⅱ ion of hexos amines using 3-methyl- 2-benzothiazolone hydrazone hydrochloride.”, Chemical and Pharmaceutical Bulletin, 1969, 17, 1505-1510.
133. Tseng. T.C., Shiao. M.S., Shieh,Y.S., Hao, Y.Y., “Study on Ganoderma lucidum 1. Liquid Culture and Chemical Composition of Mycelium.”, Botanical Bulletin of Academia Sinica. 1984, 25, 149-157.
134. Tomoda M., Gonda R., Kasahara Y., Hikino H., “Glycan structures of ganoderans B and D, hypoglycemic glycans of Ganoderma lucidum fruit bodies. Phytochem.”, Autidiabetes drugs, 1986, 25, 2817-2820.
135. Wecker A., Onken U., “Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans.”, Biotechnology Letters. 1991, 13(3), 155-160.
136. Wang Y., McNeil B., “Dissolved oxygen and scleroglucan fermentation process.”, Biotechnol. Lett, 1995, 17, 257-262.
137. Wang H. X., Ng T.B., Liu W.K., Ooi V.E.C., Chang S.T., “Polysaccharide -peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages,” Int. J. Biochem. Cell Biol., 1996, 28, 601-607.
138. Wasser S.P., Weis A.L., “Therapeutic effects of substances occurring in higher Basidiomycetes mushroom: a modern perspective.”, Crit. Rev. Immuno, 1999, 19, 65-96.
139. Wang H., Ng T.B., “Pleureryn, A Novel Protease from Fresh Fruiting Bodies of the Edible Mushroom Pleurotus eryngii.”, Biochem. Biophys, 2001, Res. Commun. 289, 750-755.
140. Wang H., Gao J., Ng T.B., “A New Lectin with Highly Potent Antihepatoma and Antisarcoma Activities from the Oyster Mushroom Pleurotus Ostreatus.”, Biochem. Biophys. Res. Commun, 2002, 275, 810-816.
141. Wasser S.P., “Medicinal mushrooms as a source of antitumor and Immunomo- dulating polysaccharide.”, Appl. Microbiol. Biot., 2002, 60, 258-274.
142. Wei M., Jiang S.T., Luo J.P., “Study on the Kinetics of Two-stage Cultivation of
Protocorm-like Bodies from Dendrobium huoshanense for Cell Growth and
Synthesis of Polysaccharides.”, Chin J Biotech, 2007, 23(1), 79-84.
143. Xu C.P., Yun J.W., “Influence of aeration on the production and the quality of the exopolysaccharides from Paecilomyces tenuipes C240 in a stirred-tank fermenter”, Enzyme and Microbial Technology, 2004, 35, 33–39.
144. Yang F.C., Liau C.B., “The influence of inviromental conditions on polysaccharide formation by Ganoderma lucidum in submerged culture.”, Process biochemistry, 1998, 33(5), 547-553.
145. Ziegler T.R., “Glutamine supplementation in catabolic illness.”, Am. J. Clin. Nutr. 1996, 64, 645-7.
146. Zhang L., Tizard I.R., “Activation of a mouse macrophage cell line by acemannan: The major carbohydrate fraction from Aloe vera gel,”, Immunopharmacology, 1996, 35, 119-128.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top