# 臺灣博碩士論文加值系統

(44.201.72.250) 您好！臺灣時間：2023/10/02 13:04

:::

### 詳目顯示

:

• 被引用:8
• 點閱:772
• 評分:
• 下載:71
• 書目收藏:1
 本文主要以B-spline函數為基底函數解三維不規則形狀彈性力學問題。從文獻中發現，目前尚無任何研究將B-spline應用於三維不規則形狀彈性力學問題。本文利用二元空間分割法與幾何布林運算判別元素落在實體內或邊界上，若是規則形狀元素則可簡單地以六面體形狀直接積分；針對不規則形狀元素處理的方式，如同有限元素法，將不規則幾何映對至主要元素中，再利用高斯積分法進行積分。首先對於規則實體分別以兩種不同邊界條件測試，使用B-spline有限元素法可用較少的自由度得到與傳統有限元素法相近的位移、應力分析結果。其後對兩個不規則實體分析，由立方實體內部挖圓柱可知，當元素增多時，除了二階分析結果不甚理想之外，其餘高階基底函數收斂效果都比有限元素法佳；在立方實體內部挖圓球分析結果顯示當網格不夠小時，則顯現不出高階收斂快的效果，且當縮小網格時發現部分元素會產生較複雜的形狀，此部分整理的積分型態種類太多仍待克服。由實例結果，可以確定了使用B-spline解三維不規則形狀問題分析結果比有限元素法更為準確。
 We used the B-spline functions as the basis functions to solve the three dimensional linear elastic problems with irregular shapes. From the references, there are no researchers using B-spline functions to analyze three dimensional linear elastic problems with irregular shapes. Binary space partition method and geometry Boolean operation are used to determine which element is within the domain or across the boundary. If the element is within the domain, then it is regular element with a cube shape and can be integrated easily. If the element is across the boundary, then for the element across boundary, we map the irregular geometry to a master element, a regular cube, as the finite element used. The integration of the irregular shape is integrated in the master element using Gauss quadrature.First, we analyze a regular cube with two different boundary conditions. Using B-spline finite element method can decrease the degree of freedom and obtain the same displacement and stress analysis results compare to the traditional finite element method. A cube with a cylinder hole and a cube with a sphere hole are used as irregular shapes examples in this thesis. In the former case, we obtained better result accuracy from the high-order B-spline basis function than the results from traditional finite element method except for the second-order B-spline basis function case. In the later case, the problems we analyzed are limited to small elements numbers. In the situation, the effect of high-order B-spline basis function is not shown. We still have problems to integrate these irregular domains. It should be overcome in the future.From the results in these examples, using B-spline finite element method to solve three dimensional problems with irregular shapes has better accuracy than traditional finite element method.
 摘要 IAbstract II目錄 IV誌謝 VI表目錄 VIII圖目錄 IX符號說明 XII第一章 緒論 11.1 前言 11.2 研究動機與方法 21.3 文獻回顧 31.4 論文架構 4第二章 相關理論 62.1 有限元素法於三維彈性力學理論 62.2 B-spline曲線介紹 102.2.1 非均勻B-spline曲線 102.2.2 均勻B-spline曲線 142.3 幾何布林運算 152.3.1 建立二元空間分割建樹 162.3.2 布林運算基本判別式 20第三章 三維B-spline有限元素法 273.1 基底函數 273.2 網格化 303.3 元素積分方式 323.4 施加邊界條件 363.5 自由度算法 37第四章 三維B-spline有限元素法應用範例 384.1 規則邊界實體應力分析 394.1.1 規則實體一邊界條件 394.1.2 規則實體二邊界條件 434.2 不規則邊界實體應力分析 474.2.1 實體中心挖去圓柱 474.2.2 實體中心挖去圓球 60第五章 結論與建議 64參考文獻 66自述 69
 [1]Aggarwal, B., “B-spline finite elements for plane elasticity problems” , Texas A&M university, 2006.[2]Anand, V.B., Computer graphics and geometric modeling for engineers, John Wiley &Sons,Inc., 1993.[3]Beissel, S. and Belytschko, T., “Nodal integration of the element–free Galerkin method”, Computer methods in applied mechanics and engineering, Vol. 139, 49-74, 1996.[4]Clough, R.W., The finite element method in plane stress analysis. Proceedings of American society of civil engineers, 2nd conference on electronic computation, Pittsburgh, PA, 345-378, 1960.[5]Courant, R., Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American mathematical society, Vol. 49, 1-23, 1943.[6]Fuch, H., Kedem, Z. and Naylor, B., “Predetermining visibility priority in 3-d scenes”, Proceedings of siggraph, Vol.13, 175-181, 1979.[7]Fuch, H., Kedem, Z. and Naylor, B., “On visible surface generation by a priori tree structures”, Proceedings of siggraph, Vol.14, 124-133, 1980.[8]Höllig, K., Finite element methods with B-splines, Society for industrial and applied mathematics, Philadelphia, 2003.[9]Höllig, K., Horner, J. and Pfeil, M., “Parallel finite element methods with weighted linear B-splines”, High performance computing in science and engineering '07: Transactions of the high performance computing center, Stuttgart (HLRS),667,2008.[10]Hikmet, C., Nazan, C. and Khaled, E., “B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems”, Applied mathematics and computation, Vol. 175, 72 - 79, 2006.[11]Liang, X., Jian, B. and Ni, G., “The B-spline finite element method in electromagnetic field numerical analysis”, IEEE transactions on magnetics, Vol. 23, 2641 - 2643, 1987.[12]Liu, G. R., Mesh free methods: moving beyond the finite element method, CRC press, Boca raton, 2003.[13]Ni, G., Xu, X. and Jian, B., “B-spline finite element method for eddy current field analysis”, IEEE transactions on magnetics, Vol. 26, 723 - 726, 1990.[14]Reddy, J. N., An introduction to the finite element method, McGraw-Hill, Texas, 2006.[15]Schoenberg, I. J., “Contributions to the problem of approximation ofequidistant data by analytic functions”, Quart. Appl. Math., Vol. 4, 45-99,112-141 , 1946.[16]Xiang, J., Chen, X., He, Y. and He, Z., “The construction of plane elastomechanics and mindlin plate elements of B-spline wavelet on the interval”, Finite elements in analysis and design, Vol. 42, 1269 - 1280, 2006.[17]Zamani, N,G., “A least squares finite element method applied to B-spline”, Journal of the Franklin institute, Vol. 311, (3), 195-208, 1981.[18]Zamani, N,G., “Least squares finite element approximation of navier’s equation”, Journal of the Franklin Institute, Vol. 311, (5), 311-321, 1981.[19]陳政德,“B-spline有限元素法於二維平面應力問題收斂性探討”, 國立成功大學機械工程研究所碩士論文, 2008.[20]趙啟翔,“B-spline有限元素法於二維平面應力問題之研究”, 國立成功大學機械工程研究所碩士論文, 2007.[21]廖宏哲, “二維B-spline有限元素法不規則邊界形狀處理及於平板上的應用”, 國立成功大學機械工程研究所碩士論文, 2007.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 射出成型流動平衡分析與改善 2 多模穴模組流道系統之流動平衡分析 3 B-Spline有限元素法於二維平面應力問題之研究 4 B-spline有限元素法於二維平面應力問題收斂性探討 5 二維B-Spline有限元素法不規則邊界形狀處理及於平板上的應用 6 含纖維材料對射出成型製程之影響分析 7 流動平衡元件應用於多模穴射出成型之 製程分析 8 B-spline有限元素法於二維雙材料平面應力問題收斂性探討 9 B-spline有限元素法使用者圖形介面的開發及網格化處理 10 B-spline有限元素法於三維彈性力學不規則實體應用

 無相關期刊

 1 B-spline有限元素法於二維平面應力問題收斂性探討 2 摻雜氮元素之二氧化鈦薄膜改善光觸媒性質研究 3 表面粗糙度對硬質陶瓷鍍膜與類鑽碳鍍膜耐磨性之影響 4 經高溫氧化之添加鋁元素鉻薄膜磨潤性能研究 5 添加不同碳化鎢粒子強化鎳基熱熔射合金塗層之磨耗、氧化及腐蝕性質研究 6 氧化鋅奈米線成長與感測器元件之應用 7 強健控制器設計及其於水位控制之應用 8 知識分享對供應鏈績效的影響 9 使用雙行態共振器之2.4/5.2-GHz微波與CMOS24/60-GHz毫米波雙頻帶通濾波器設計 10 以離散事件模擬結合精實方法求解非固定式單件流之生產系統-以漁網生產為例 11 利用噴墨列印技術製作聚(3-己基噻吩)為主動層之有機薄膜電晶體 12 超越老化支持團體對機構老人超越老化觀感、憂鬱與生活滿意度之成效探討 13 子音量化分析 14 設計與改良應用於脊椎骨質疏鬆症之內固定骨釘 15 先進視訊編碼中內部預測的效能提升

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室