跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃新喭
研究生(外文):Shin-Yan Huang
論文名稱:時空區塊編碼之多輸入多輸出無線正交分頻多工通訊系統中利用不同領航信號配置之通道估測技術研究
論文名稱(外文):Channel Estimation Techniques with Various Pilot Assignments for Wireless STBC-Based MIMO-OFDM Communications
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:89
中文關鍵詞:正交分頻多工多輸入多輸出通道估測空時區塊編碼領航信號配置
外文關鍵詞:OFDMMIMOchannel estimationSTBCpilot assignments
相關次數:
  • 被引用被引用:1
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
由於傳收技術的快速發展,未來無線通訊系統必須兼具高傳輸速率、有效率的利用頻寬、以及提高傳送訊號之品質。對於正交分頻多工 (OFDM) 傳輸系統而言,能夠極為有效地來降低多重路徑干擾下所產生的頻率選擇性衰落效應,同時頻寬資源的使用效率亦可以獲得提昇,是為其最大的特點。多輸入多輸出 (MIMO) 之傳輸架構能夠提供多個獨立的無線通道,透過裝置於傳送與接收兩端上的多根天線來同時收送多個訊號,運用空間分集的技術提昇訊號品質。將多天線之傳輸結構與正交分頻多工系統相互結合之後,即可形成所謂的多輸入多輸出正交分頻多工 (MIMO-OFDM) 無線傳輸系統,預期可以同時兼具前述兩種傳輸機制的優點,使得通訊的品質能夠更進一步地獲得提昇。而在近年來,領航信號輔助的通道估測技術應用於正交分頻多工系統中已經相當地成熟,許多研究成果也驗證了其良好的估測效果與便於實現的特色。然而此類通道估測技術若運用於多天線架構下的正交分頻多工系統時,領航信號之設計與配置上的調整則是必需的,同時其估測結果將直接影響到多天線系統的接收端對於多重接收訊號之時空區塊解碼的正確度。在本論文中,在多根傳送天線之架構下設計領航信號,最關鍵的性質便是領航信號彼此間必須相互保持正交,使得接收端可以利用此正交性正確地完成多重通道之估測,而領航信號將被配置成梳形樣式 (comb-type) 以適用於頻率平坦性衰落快速時變通道。在此我們提出了新的通道估測演算法,搭配正交梳形配置的領航信號,應用於時空區塊碼之二輸入二輸出正交分頻多工(STBC-based 2I2O-OFDM)系統在多重路徑為四條路徑鄉村(4-path RA)、六條路徑一般城市(6-path TU)與六條路徑惡劣城市(6-path BU)環境中來完成雙重通道之估測。本論文所採用之通道估測演算法分別如下:(1)內積式(inner product)結合非零領航信號(non-zero pilot)之通道估測,(2)內積式結合虛擬領航信號(virtual pilot)之通道估測以及(3)最小平方(least squares)結合虛擬領航信號之通道估測。以上所述的方法將透過一些簡易的數學分析和模擬圖在4-path RA、6-path TU與
6-path BU環境中做分析以及歸納結果比較,詳實地探討領航信號輔助式通道估測技術應用於時空區塊編碼之多輸入多輸出正交分頻多工系統,在多種戶外無線通訊環境中之效能,並且說明領航信號在多天線系統中的設計特點與配置方式,將其優點與便利性加以推廣實現,以達成整體系統效能與通訊品質均獲得增進與保障之最終目標。
Due to the rapid development of transceiving techniques, high transmission data rate, efficient spectral bandwidth, and quality of reliability are more necessary for future wireless communications systems. Orthogonal frequency division multiplexing (OFDM) schemes are a well-known wireless transmission technique which is effective against frequency selective fading channel and capable of reducing multipath propagation effects very well. Multi-input multi-output (MIMO) architectures can provide multiple artificial uncorrelated channels for transmitting/receiving replicas of the same signals simultaneously through various antennas at different symbol duration to obtain diversity gains.

For MIMO-OFDM systems, channel estimation is crucial for the decoding procedure of space-time block coding (STBC) to separate the superposition results from multiple transmitted signals. In order to compensate the signal distortion, pilot-symbol-assisted channel estimation (PSACE) techniques with various pilot assignments have been used to obtain the channel impulse response (CIR). In practice, the channel estimation procedure can be assisted by transmitting pilot symbols that are already known at the receiver end. Therefore, system performance with channel estimation usually depends on the choice of pilot patterns and the number of pilot symbols.

In this thesis, three kinds of channel estimation algorithms are developed with various pilot assignments for STBC-based MIMO-OFDM systems. They are (1) inner product estimation with non-zero pilots (M1), (2) inner product estimation with virtual pilots (M2) and (3) least squares estimation with virtual pilots (M3). All of three estimation algorithms utilize orthogonal pilot patterns between Tx.1 and Tx.2. The performances of M2 and M3 are almost identical. If there are more antennas on transmitter end, M3 is easier to implement than M1. Therefore, the estimation algorithm in M3 is not only to reduce computation complexity but also to obtain better system performance. Finally, some comparative simulations are given to illustrate the superior performance of M3 in STBC-based MIMO-OFDM systems under COST 207 mobile wireless environments.
Abstract i
Contents iv
List of Tables v
List of Figures viii
1 Introduction 1
1.1 Preliminary . . . . .. . . . . . . . . . . . . .. . . . 1
1.2 Basics of OFDM . . . . . . . . . . . . . . . . . . . . 2
1.3 Concepts of MIMO tructure . . . . . . . . . . . . . 7
1.4 Organization of the Thesis . . . . . . . . . . . . . . .9
2 OFDM Systems and MIMO Architectures 10
2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . 10
2.2 OFDM System Description . . . . . . . . . . . . . . . . 10
2.3 STBC-MIMO Architecture . . . . . . . . . . . . . . . . .13
2.4 STBC-based MIMO-OFDM Systems . . . . . . . . . . . .. . 15
2.5 Simulation of STBC MIMO-OFDM system . . . . . . . . . . 17
3 Wireless Mobile Channel Model 22
3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . 22
3.2 Mobile Radio Propagation . . . . . . . . . . . . . . . 24
3.3 Small-scale Fading . . . . .. . . . . . . . . . . . . . 26
3.4 The Correlation among Multiple Channels . . . . . . . . 32
3.5 Rayleigh Fading Channel Simulators . . . . . . . . . . .33
3.6 Simulation of Rayleigh Fading Channel . . . . . . . . . 35
4 Channel Estimation 40
4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . 40
4.2 System Description . . . . . . . . . . . . . . . . . . 41
4.3 Orthogonality of Pilot Assignment . . . . . . . . . . . 47
4.4 Channel Estimation Algorithm . . . . . . . . . . . . . .51
4.4.1 Inner Product Estimation with Non-zero Pilots (M1) . .52
4.4.2 Inner Product Estimation with Virtual Pilots (M2) . . 53
4.4.3 Least Squares Estimation with Virtual Pilots (M3) . . 55
4.5 System Parameters and Channel Profiles . . . . . . . . .57
4.6 Comparative Simulations . . . . . . . . . . . . . . . . 59
5 Conclusions and Future Works 72
Bibliography 74
[1] R. W. Chang, “Synthesis of Bandlimited Orthogonal Signals for Multichannel Data Transmission,” Bell System Technical Journal, vol. 45, pp. 1775–1796, Dec. 1966.
[2] R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, Boston, 2000.
[3] R. Van Nee, “A New OFDM Standard for High Rate Wireless LAN in the 5 GHz Band,” Proceedings of the IEEE 49th Vehicular Technology Conference, vol. 1, pp. 258–262, 1999.
[4] S. G. Glisic, Advanced Wireless Communications - 4G Technologies, John Wiley & Sons, 2004.
[5] C. Langton, “Orthogonal Frequency Division Multiplex (OFDM) Tutorial,” Intuitive Guide to Principles of Communications on www.complextoreal.com, 2004.
[6] J. J. van de Beek, P. O. B‥orjesson, P. ‥Odling, and S. K. Wilson, “Orthogonal Frequency Division Multiplexing (OFDM),” W. R. Stone (editor), Review of Radio Science 1997–1999, International Union of Radio Science (URSI), Oxford University Press, in press.
[7] L. J. Cimini, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiple Access,” IEEE Transactions on Communications, vol. 33, pp. 665–675, 1995.
[8] D. Matia, “OFDM as a Possible Modulation Technique for Multimedia Applications in the Range of mm Waves,” Introduction to OFDM, II edition 10/30/98/TUD-TVS.
[9] S. Nanda, R. Walton, J. Ketchum, M. Wallace and S. Howard, “A High Performance MIMO OFDM Wireless LAN,” IEEE Communications Magaize, vol. 43, no. 2, pp. 101–109, Feb. 2005.
[10] Hongwei Yang, “A Road to Future Broadband Wireless Access: MIMO-OFDMBased Air Interface,” IEEE Communications Magaize, vol. 43, no. 1, pp. 53–60 Jan. 2005.
[11] D. Gesbert, M. Shafi, D. S. Shiu, P. J. Smith and A. Naguib, “From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 281–302, Apr. 2003.
[12] G. D. Durgin, Space-Time Wireless Channels, Prentice Hall PTR, New Jersey,
[13] G. Raleigh and J. M. Cioffi, “Spatial-temporal Coding for Wireless Communications,” IEEE Transactions on Communications, vol. 46, pp. 357–366, 1998.
[14] H. Bolcskei, D. Gesbert, and A. J. Paulraj, “On the Capacity of OFDM Based Spatial Multiplexing Systems,” IEEE Transactions on Communications, vol. 50, pp. 225–234, Feb. 2002.
[15] S. Coleri, M. Ergen, A. Puri and A. Bahai, “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems,” IEEE Transactions on Broad- casting, vol. 48, no. 3, pp. 223–229, Sept. 2002.
[16] J.W. Choi and Y. H. Lee, “Design of the Optimum Pilot Pattern for Channel Estimation in OFDM Systems,” Proceedings of the IEEE Global Communications Conference, vol. 6, pp. 3661–3665, Nov. 2004.
[17] Bo-Chiuan Chen, Wen-Jeng Lin and Jung-Shan Lin, “Pilot-assisted channel estimation for STBC-based wireless MIMO-OFDM systems,” Proceedings of the 2007 international conference on Wireless communications and mobile comput-ing, pp. 411–416, Aug. 2007.
[18] S. C. Liang and W. L. Wu, “Channel Estimation Based on Pilot Subcarrier in Space-Time Block Coded OFDM System,” Proceedings of the IEEE International Conference on Communication Technology, vol. 2, pp. 1795–1798, Apr. 2003.
[19] H. Zhang, J. M. Chen, Y. X. Tang and S. Q. Li, “Analysis of Pilot-Symbol Aided Channel Estimation forMIMO-OFDMSystems,” Proceedings of the IEEE International Conference on ICCCAS, vol. 1, pp. 299–303, Jun. 2004.
[20] D. S. Wang, G. X. Zhu and Z. P. Hu, “Optimal Pilots in Frequency Domain for Channel Estimation in MIMO-OFDM Systems in Mobile Wireless Channels,”Proceedings of the IEEE 59th Vehicular Technology Conference, vol. 2, pp. 608– 612, May 2004.
[21] D. M. Ter’an and R. P. T. Jimenez, “Channel Estimation for STBC-OFDM Systems,” Proceedings of the IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, pp. 283–287, Jul. 2004.
[22] W. G. Jeon, K. H. Paik and Y. S. Cho, “An Efficient Channel Estimation Technique for OFDM Systems with Transmitter Diversity,” Proceedings of the IEEE 11th International Symposium on PIMRC, vol. 2, pp. 1246–1250, Sept. 2000.
[23] Z. S. Wu, J. Q. He and G. X. Gu, “Design of Optimal Pilot-Tones for Channel Estimation in MIMO-OFDM Systems,” Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 1, pp. 12–17, Mar. 2005.
[24] H. J. Liu, R. Hoshyar and R. Tafazolli, “Performance Analysis of Training and Pilot Scheme in Adaptive MIMO-OFDM Systems,” CCSR, University of Surrey, Guildford, Surrey, GU2 7XH, U.K.
[25] R. Negi and J. Cioffi, “Pilot Tone Selection for Channel Estimation in a Mobile OFDM System,” IEEE Transactions on Consumer Electronics, vol. 44, no. 3, pp. 1122–1128, Aug. 1998.
[26] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[27] V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-Time Block Coding for Wireless Communications: Performance Results,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 3, pp. 451–460, Mar. 1999.
[28] A. van Zelst, R. van Nee and G. A. Awater, “Space Division Multiplexing (SDM) for OFDM Systems,” Proceedings of the IEEE 51th Vehicular Technology Conference, vol. 2 pp. 1070–1074, May 2000.
[29] Y. Ogawa, K. Nishio, T. Nishimura and T. Ohgane, “AMIMO-OFDMSystem for High-Speed Transmission,” Proceedings of the IEEE 58th Vehicular Technology Conference, vol. 1, pp. 493–497, Oct. 2003.
[30] V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-Time Block Codes from Orthogonal Designs,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456–1467, Jul. 1999.
[31] K. F. Lee and D. B. Williams, ”A Space-frequency Transmitter Diversity Technique for OFDM Systems,” Proceedings of the IEEE Global Communications Conference, vol. 3, pp. 1473–1477, Nov. 2000.
[32] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.
[33] H.-P. Lin, “Performance Evaluation of the STBC-OFDM MIMO Systems in the Correlated Rayleigh Fading Channels,” Journal of National Taipei University of Technology, vol. 37-1, pp. 169–178, Dec. 2003.
[34] R. B. Ertel and J. H. Reed, “Generation of Two Equal Power Correlated Rayleigh Fading Envelopes,” IEEE Communications Letters, vol. 2, no. 10, pp. 276–278, Oct. 1998.
[35] N. C. Beaulieu, “Generation of Correlated Rayleigh Fading Envelopes,” IEEE Communications Letters, vol. 3, no. 6, pp. 172–174, Jun. 1999.
[36] N. C. Beaulieu and M. L. Merani, “Efficient Simulation of Correlated Diversity Channels,” Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 1, pp. 207–210, Sept. 2000.
[37] W. C. Jakes, Microwave Mobile Communications, JohnWiley & Sons, New York, 1974.
[38] P. Dent, G. E. Bottomley and T. Croft, “Jakes Fading Model Revisited,” IEE Electronics Letters , vol. 29, no. 13, pp. 1162–1163, Jun. 1993.
[39] M. F. Pop and N. C. Beaulieu, “Limitations of Sum-of-Sinusoids Fading Channel Simulators,” IEEE Transactions on Communications, vol. 49, no. 4, pp. 699–708, Apr. 2001.
[40] M. F. Pop and N. C. Beaulieu, “Design of Wide-Sense Stationary Sum-of-Sinusoids Fading Channel Simulators,” Proceedings of the IEEE International Conference on Communications, vol. 2, pp. 709–716, Apr. 2002.
[41] Y. X. Li and X. J. Huang, “The Simulation of Independent Rayleigh Faders,” IEEE Transactions on Communications, vol. 50, no. 9, pp. 1503–1514, Sept. 2002.
[42] J. Wang, Y. Q. Qiang, B. Zhang and D. B. Li, “Comparison of Statistical Properties between an Improved Jakes’ Model and the Classical One,” Proceedings of the 14th IEEE Internatonal Symposium on PIMRC, vol. 1, pp. 380–384, Sept. 2003.
[43] Y. H. R. Zheng and C. S. Xiao, “Simulation Models with Correct Statistical Properties for Rayleigh Fading Channels,” IEEE Transactions on Communications, vol. 51, no. 6, pp. 920–928, Jun. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊