跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃昌彥
研究生(外文):Chang-Yan Huang
論文名稱:壓電式噴孔片之液滴噴出行為之田口式分析
論文名稱(外文):The analysis of Taguchi on droplet ejection process with the nozzle plate connected to a piezoelectric actuator
指導教授:林振德林振德引用關係
指導教授(外文):Jenn-Der Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:93
中文關鍵詞:噴孔片液滴田口式
外文關鍵詞:Nozzle plateDropletTaguchi
相關次數:
  • 被引用被引用:1
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬透過實驗觀察,探討噴孔片在不同的噴孔直徑以及不同的噴孔片厚度下,噴孔表面的親疏水性對液滴噴射行為的影響,並運用田口式品質分析方法,判斷出在哪種條件下,噴出液珠的效果較好。研究中採用微電鑄技術來製作噴孔片,並在其上施以塗層改變其表面親疏水性。經由可視化分析,本實驗詳細討論噴孔直徑與噴孔片厚度以及表面親疏水性的變化對液滴噴射速度、液滴斷裂時間與液滴體積之影響。
經由實驗結果,本實驗發現當噴孔直徑越小,噴孔片的厚度越厚,噴孔片的內表面呈現疏水性,上面任一條件皆可使噴出的液滴縮小,液珠脫離液柱的時間縮短,並且液珠不會因為倍頻的振幅干擾,而出現噴出的液珠體積不均勻或是速度不均勻的現象。三個控制因素用S/N的比値作為比較,本實驗發現液珠受到的影響以噴孔直徑與噴孔片厚度為主,內表面的接觸角雖有影響,但影響並沒有比前兩者為大。
In this study, we use the experiment to observe the effect of wetting conditions on droplet ejection process at different nozzle size and different thickness of nozzle plate. In addition, using the Taguchi quality analytics to diagnosis droplet ejection process, which droplet ejection process is superior. The nozzle plate is fabricated using electroforming process and coated to vary wetting conditions at the air-water-solid interfaces. In the study, Using the high speed CCD camera connected to a video recorder will be utilized to visualize the droplet ejection process and further to analyze the droplet velocity, breakup time, and droplet volume at various wetting conditions.
In the study diagnosis, we dig out the diameter of nozzle is small, or the thickness of nozzle space is thick, or the surface of spraying sheet is anti-water. Any of these factors make the ejecting droplet shrinking, let abridgement of time to the ejecting droplet come off the water cylinder, and abatement Clock Multiplier affection of ejecting droplet. Abatement appearance unevenness affection of ejecting droplet and speed. The diameter, thickness size and contact angle by compare using the signal to noise ratio. According to the comparison of diameter, thickness and contact angle. It is found that the nozzle geometry including orifice diameter and nozzle thickness is more dominant than the contact angle of nozzle wall.
摘要............................................I
Abstract........................................II
致謝............................................III
目錄............................................IV
表目錄..........................................VI
圗目錄..........................................VIII
符號表..........................................XII
第一章 序論....................................1
1-1前言.........................................1
1-2文獻回顧.....................................3
1-3本文目的.....................................5
第二章 實驗理論與噴孔片製程....................6
2-1 噴出液滴動作原理............................6
2-2 壓電材料....................................8
2-3 噴孔片製程.................................11
第三章 實驗量測與分析方法.....................18
3-1實驗裝置與量測..............................18
3-2田口式品質工程分析..........................21
第四章 結果與討論.............................27
4-1 田口式實驗分析.............................29
4-2頻率變化實驗................................36
4-3 無因次參數分析.............................37
4-4 倍頻原因與影響.............................39
第五章 結論與未來展望.........................42
5-1 結論.......................................42
5-2 未來展望...................................44
參考文獻.......................................45
附錄1 各實驗振幅圖與速度圖.....................48
【1】I. Endo,Y. Sato, S. Satio, T. Nakagiri, S. Ohno, and Canon, Inc., “Bubble Jet Recording Method and Apparatus in Which a Heating Element Generates Bubbles in Multiple Liquid Flow Paths to Project Droplets”, U.S.Pat.4 740 796, 1988.
【2】B.J. Keefe, M.F. Ho, K.J. Courian, S.W. Steinfield, W.D. Chiders, E.R. Tappor, K. E. Trucba, T.I. Chapman, W.R. Knight, J.G. Mortz, and Hewlett-Packard Company, “Inkjet Printhead Architecture for High Speed and High Resolution Printing”, U.S. Pat. 5 648 805, 1994.
【3】F.G Tseng, C. Linder, C.J Kim, and C.M Ho, “Control of Mixing with Micro-Injectors for Combustion Application”, in Proc. MEMS, ASME Int. Mechanical Engineering Congress and Exposition, Vol. 59, DSC, Atlanta, GA, Nov. 1996, pp.183-187.
【4】M. Fahndrich, B. Hochwind, and A. Zollner, “Fluid Dynamics in Micro Dosing Actuators”, in Tech. Dig. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers ’95) Stockholm, Sweden, June 1995, pp.295-298
【5】H. Le, “Progress and Trends in Ink-jet Printing Technology”, Journal of Imaging Science and Technology, Vol.42, No.1, January/February, 1998, p49~p62.
【6】S. Kamisuki, M. Fujii, T. TakeKoshi, C. Tezuka and M.Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head”, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Jan. 23-27, 2000, p793~p798.
【7】P. Curie, J. Curie, Bull. Soc. Min. de France, 3, 1880, p90.
【8】W. G. Hankel, Abh. Sachs, 12, 1881, p457.
【9】W. G. Hankel, Ber. Sachs, 33, 1881, p52.
【10】S. Kamisuki, M.Fujii, T. Takekoshi, C. Tezuka and M.Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head”, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Jan. 23-27, 2000, p793~p798.
【11】A. Langevin, “Ultilisation de 1’ effect Piezoelectique, Presses Unicersitaires de France”, Paris, 1942
【12】W. G. Cady, "The Piezoelectric Resonator", Phys. Rev., 17, 1921, p531.
【13】H. C. Lee, “Drop Formation in a Liquid Jet”, IBM J. Res. Develop, July 1974, p364~p369
【14】W. T. Pimbley, “Drop Formation from a Liquid Jet: ALinear One-Dimensional Analysis Considered as a Boundary Value Problem”, IBM J. Res. Develop, March 1976, p148 ~p156.
【15】C. A. Burce. “Dependence of Ink Jet Dynamics on Fluid Characteristics”, IBM J. Res. Develop, May 1976, p258~p270.
【16】W. T. Pimbley, H. C. Lee, “Satellite Droplet Formation in a Liquid Jet”, IBM J. Res., Develop, January 1977, p21~p30.
【17】J. E. Fromm, “Numerical Calculation of the Fluid Dymanics of Drop–on-Demand Jet” IBM J.Res. Develop, Vol. 28, no. 3, May 1984, p322~p333.
【18】P McGuinness,W Drenckhan and D Weaire, “The optimal tap: three-dimensional nozzle design”, 2005, p3382~p3386
【19】T. Lindemann , H. Ashauer , T.Goettsche , H. Sandmaier , “Bubble jet printhead with integrated polyimide nozzle plate”, Micro Electro Mechanical Systems, 18th, 2005, p560~p563.
【20】吳朗著, 電子陶瓷:壓電陶瓷, 全欣資訊圖書股份有限公司, 台北, 民國八十三年
【21】吳鉉忠,“壓電式微液滴噴射數學模擬系統之開發與實驗研究”, 國立成功大學材料科學及工業工程學系博士論文, 2004
【22】周敏傑等人,”微結構之合金電鑄技術”, 機械工業雜誌, 八月, 150 (1998)
【23】(日)田口玄一著, 田口式品質工程導論, 張季娜等譯, 中華民國品質管制學會, 台北, 民國七十八年
【24】傅林, 董文楚, 鄭耀泉, 微觀工程技術指南2, 北京:水利電力出版社. 1988
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top