跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭秀蓮
研究生(外文):Cheng Hsiu-Lien
論文名稱:以分頻段聽神經複合動作電位與聽性腦幹反應的潛時值進行梅尼爾氏症與正常聽耳耳蝸行波傳導時間之差異分析
論文名稱(外文):The comparison of cochlear traveling time in Meniere’s disease and normal hearing ears using derived-band cochlear compound action potentials and auditory brainstem responses
指導教授:王智弘王智弘引用關係
指導教授(外文):Chih-Hung Wang
學位類別:碩士
校院名稱:國立台北護理學院
系所名稱:聽語障礙科學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:65
中文關鍵詞:梅尼爾氏症高通遮蔽噪音耳蝸行波傳導時間分頻段聽性腦幹反應聽神經動作電位
外文關鍵詞:Meniere’s diseasehigh-pass maskingcochlear traveling wave velocityderived-bandauditory brainstem responsecompound action potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:1
研究目的:利用分頻段聽神經複合動作電位的紀錄方式來提升耳蝸行波傳導時間之可辨率,並進一步比較梅尼爾氏症患者的症狀耳與正常聽耳耳蝸行波傳導時間之差異。
研究材料與方法:研究對象包括 22 位 (8男、14女) 符合1995年美國耳鼻喉頭頸外科醫學會診斷梅尼爾氏症準則之單側性患者,症狀發生後為期一週以內,年齡介於26歲至60歲,與 30位正常聽耳,年齡介於20歲至43歲;研究方法為使用鼓膜電極和高通遮蔽噪音技術以提升聽神經複合動作電位之可辨率與頻率特異性,並單獨使用短聲刺激音以及短聲依序混合臨界頻率設定在 8000、4000、2000、1000 和 500 Hz 高通遮蔽噪音之刺激音,每受測耳共收集 6 種刺激音模式誘發之聽性腦幹反應,波形依臨界頻率前後相減,最後得到一組包括: 8000 Hz 以上、8000-4000 Hz、4000-2000 Hz、2000-1000 Hz 和1000-500 Hz 之分頻段聽性腦幹反應與聽神經複合動作電位藉以比較聽神經複合動作電位和聽性腦幹反應第五波之可辨率,以及兩種測量方式之潛時值在梅尼爾氏症者症狀耳與聽力正常耳的差異分析。
研究結果:聽神經複合動作電位和聽性腦幹反應第五波在低頻帶 (500-1000 Hz ) 之 可辨率無明顯差異 ( 85-88 % ),但聽神經複合動作電位在高頻帶 ( 8000 Hz 以上) 之可辨率較第五波為高 ( 82 %:64 % )。 聽神經複合動作電位和第五波潛時值均隨臨界頻率的縮短而增加。 當比較各分頻段的絕對潛時值時,梅尼爾氏症患者的症狀耳與正常聽耳無明顯差異。 當比較各分頻段的潛時值與click短聲刺激的潛時值兩者之間的潛時值差時,不管是以聽神經複合動作電位和聽性腦幹反應第五波的測量值分析,實驗組與正常聽耳之間並無明顯差異。 但是以click短聲刺激的潛時值進一步與各分頻段的潛時差做比較時,則發現於低頻帶 (500-1000 Hz ) 聽神經複合動作電位以及聽性腦幹反應第五波的潛時變化均較正常聽耳縮短且顯著 (p < 0.05) 。 此外第五波潛時變化在梅尼爾氏症的非症狀耳也被發現較正常聽耳縮短且顯著 (P < 0.05),然而聽神經複合動作電位的潛時差在梅尼爾氏症的非症狀耳與正常聽耳並無明顯差異,顯示在輔助診斷梅尼爾氏症的檢查工具上,聽神經複合動作電位要比聽性腦幹反應第五波應用於耳蝸行波傳導時間的判定上更具專一性。
結論:
1. 鼓膜電極可以提高聽神經複合動作電位振幅的辨識度。
2. 上述技術可使分頻段聽神經複合動作電位的可辨率較聽性腦幹反應第五波為高。3. 僅比較各分頻段的絕對潛時值時,梅尼爾氏症患者的症狀耳與正常聽耳無明顯差 異。 此結果暗示各分頻段的絕對潛時值似乎無法用以鑑別各分頻段內淋巴水腫的存在與否,特別是指當病患處於典型症狀發作後的一星期內時,相較於過去文獻上的差異,是否正處於急性發作的階段可能是影響此結果的重要因素。
4. 然而當比較各分頻段的潛時差與click短聲刺激的潛時值兩者之間的潛時變化時,於低頻帶 (500-1000 Hz ) 聽神經複合動作電位以及聽性腦幹反應第五波的潛時值差均較正常聽耳縮短且顯著 (p < 0.05) 。 此結果似乎又意味著於梅尼爾氏症典型症狀發作後,即使非處於急性發作,以”各分頻段的潛時潛時變化”的方法還是較能敏感性的偵測到低頻率帶 (500-1000 Hz ) 存在內淋巴水腫效應的可能性。
Background: This study is designed for comparing the cochlear traveling time difference between ears of Meniere’s disease (MD) patients and normal subjects. Both derived-band auditory brainstem responses (ABRs) and compound action potentials (CAPs) detecting techniques were used. To improve the recognized waveform latencies, the CAP was detected by using the Biologic TM-EcochGtrode system electrodes. Derived-band technique was adopted and modified from previous literature by applying an ipsilateral high-pass masking noise.
Material and Methods: This study received institutional review board approval. Twenty-two unilateral Meniere’s disease patients (8 males, 14 females) diagnosed according to the 1995 guidelines published by American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS, 1995) were included with the symptom presented within one week, aged 26 to 60 years, and thirty ears from thirty subjects with hearing sensitivity within normal limits (15 left, 15 right), aged 20 to 43 years. All subjects underwent extratympanic electrode insertion using the Biologic TM-ECochGtrode system (Biologic Systems Corp, Mundelein,Ill) and ABR responses to six stimulus conditions were obtained, including click alone and click presented with various ipsilateral pink noise high-pass filtered maskers (cut-off frequencies were close to 8000, 4000, 2000, 1000 and 500 Hz). Six auditory brainstem evoked potentials are recorded and subtracted by each other, resulting in above 8000 Hz, 8000-4000 Hz, 4000-2000 Hz, 2000-1000 Hz and 1000-500 Hz five derived-band ABRs. Estimates from derived-band ABRs and CAP were comparable to each other.
Results: More than 85 % for both derived-band CAP and wave V latencies can be identified in a low-frequency band (500-1000 Hz). The percentage of recognizable latency presented in derived-band CAP (93.4 %) is higher than the one in ABR wave V (89.0 %) across all frequencies. Both peak latencies presented in derived-band CAP and ABR wave V increase as the cochlea is masked from 8 kHz and higher down to 0.5 kHz. The absolute band-derived latency distribution presented in MD group overlaps the one in normal hearing group either observed in CAP or wave V. The latency difference between click alone and band-derived ABR detected both in CAP and wave V, also revealed no significant difference compared between experimental and normal groups. However, the latency change between click alone and band-derived ABR evaluated in both CAP and wave V, significant increase in MD group when compared with normal hearing group at low frequency band (500-1000 Hz) (P< 0.05).
Conclusion:
1. Recognizable latencies presented in derived-band CAP are improved by tympanic membrane electrodes recording.
2. With this modified derived-band CAP recording, the identification ratio of cochlear traveling wave velocity in CAP is higher than the one in ABR wave V.
3. By comparing the absolute peak latency values at each band-derived frequency between MD group and control group, there is no significant difference. This result may be referred to the variation of disease progression in collected MD patients in this study.
4. Both band-derived CAP and ABR wave V can detect the alteration of the cochlear traveling wave velocity in a low frequency band of 500-1000 Hz when compared using latency change in MD group. This result suggests that the derived-band technique may be more sensitive in detecting an endolymphatic hydrop condition in an assumed low frequency map in the cochlea.
目 錄 頁數
誌 謝 I
中文摘要 II
英文摘要 IV
目 錄 VII
表 目 次 IX
圖 目 次 X
第一章 緒論
第一節 研究背景 1
第二節 研究目的 3
第二章 文獻探討
第一節 內耳的解剖生理 5
第二節 梅尼爾氏症的病理機制 6
第三節 梅尼爾氏症的臨床定義 7
第四節 客觀檢查工具與梅尼爾氏症診斷的關係 8
第五節 行波速率與梅尼爾氏症的關係 13
第三章 研究方法
第一節 研究架構 19
第二節 研究對象 21
第三節 研究工具 25
第四節 研究步驟 31
第五節 資料處理與分析 33
第四章 研究結果與討論
第一節 梅尼爾氏症症狀耳與正常聽耳平均低頻純音聽力閾值之比較 34
第二節 分頻段聽性腦幹反應之聽神經複合動作電位與第五波可辨率比較 36
  第三節 正常聽耳與梅尼爾氏症症狀耳加重電位振幅、動作電位振幅與兩者
振幅比值之比較 40
  第四節 梅尼爾氏症症狀耳與正常聽耳分頻段聽神經複合動作電位潛時值之
表現 43
  第五節 梅尼爾氏症症狀耳與正常聽耳分頻段聽性腦幹反應第五波潛時值之
比較 46第六節 正常聽耳、梅尼爾氏症症狀耳和非症狀耳於click alone和click +
500 Hz high-pass masking noise誘發聽性腦幹反應與 500-1000 Hz 低頻段潛時比較分析 49
第七節 梅尼爾氏症症狀耳的潛時差和低頻段潛時變化與平均低頻純音聽力 閾值的比較分析 52
第五章 討論
第一節 分頻段聽神經複合動作電位和第五波判讀的可辨率 53
第二節 梅尼爾氏症症狀耳與正常聽耳耳蝸電圖之比較 55
第三節 分頻段聽神經複合動作電位和第五波潛時值之比較 56
  第四節 潛時差和潛時變化之比較 57
第六章 結論與建議
  第一節 結論 58
  第二節 研究限制與建議 59
參考文獻 60
參考文獻

一、參考書籍
Hood, J.W. (1992). Handbook of auditory evoked responses. Boston: Allyn and Bacon.
Hood, L.J. (1998). Clinical application of the auditory brainstem response (pp. 45-46). Singular Publishing Group, Incorporation.
二、參考期刊
Akkuzu, G., Akkuzu, B., & Ozluoglu, L.N. (2006). Vestibular evoked myogenic potentials in benign paroxymal positional vertigo and Meniere’s disease. Europe Arch Otorhinolaryngology, 263, 510-517.
Andrews, J.C. (2004). Intralabyrinthine fluid dynamics: Meniere disease. Current Opinion Otolaryngology & Head and Neck Surgery, 12, 408-412.
Anne, S., Kisley, L.B., Tajuddin, S.T., Leahy, P., Alagramam, K.N., & Megerian, C.A. (2007). Molecular change associated with the endolymphatic hydrops model. Otology & Neurology, 28, 834-841.
Alpay, H.C. & Linthicum, F.H. (2007). Temporal histopathology case of the Month: Endolymphatic hydrops without Meniere’s symdrome. Otology & Neurology, 28, 871-872.
Arts, H.A., Kileny, P.R., & Telian, S.A. (1997). Diagnosis testings for endolymphatic hydrops. Otolatyngologic Clinics of North America, 30 (6), 987-1005.
Brendan, C., & William, G.. (1999). Meniere;s disease: The incidence of hydrops in the contralateral asymptomatic ear. Laryngoscope, 109 (11), 1800-1802.
Burkard, R., & Hecox, K. (1983). The effect of broadband noise on the human brainstem auditory evoked responses. II. Frequency specificity. Journal of Acoustic Society of American, 74 (4), 1214-1223.
Chung, W.H., Cho, D.Y., Choi, J.Y., & Hong, S.H. (2004). Clinical usefulness of extratympanic elctrocochleography in the diagnosis of Meniere’s disease. Otology & Neurology, 25, 144-149.
Cohen, J., Morizono, T., & Long, C., (1985). The effect of glycerol on cochlear function and ionic concentration. Arch Otorhinolarynogology, 241, 285-293.
Committee on hearing and equilibrium guidelines for the diagnosis and evaluation therapy in Meniere’s disease (1995). American Academy of Otolaryngology-Head and Neck Surgery Foundation, Inc. Otolaryngology Head and Neck Surgery, 113, 181-185.
Donaldson, G.S., & Ruth, R.A. (1993). Derived-band auditory brain-stem response estimates of travelinging time velocity in humans I: Normal-hearing subjects. Journal of Acoustic Society of American, 93 (2), 940-951
Donaldson, G.S., & Ruth, R.A. (1996). Derived-band auditory brain-stem response estimates of travelinging wave velocity in humans II: Subjects with noise-induced hearing loss and Meinere’s disease. Journal of Speech and Hearing Research, 39, 534-545.
De Valck, C.F.J., Claes, G.M.E., Wuyts, F.L., & Van de Heyning, P.H. (2007). Lack of diagnostic value of high-pass noise masking of auditory brainstem responses in Meniere’s disease. Otology & Neurology, 28, 700-707.
Don, M., Kwong, B., & Tannka, C. (2005). A diagnostic test for Meinere’s disease and cochlear hydrops: Impaired high-pass noise masking of auditory brainstem responses. Otology & Neurology, 26, 711-722.
Eggermont, J.J., & Odenthal, D.W. (1974). Frequency selective masking in electrocochleography. Revue de Laryngologie Otologie Rhinologie, 95(7-8), 489-96.
Elberling, C. (1974). Action potentials along the cochlear partition recorded from the ear canal in men. Scandinavian Audiolog,3, 13-19.
Ferraro, J.A., & Durrant, J.D. (2006). Electrocochleography in the Evaluation of Patients with Meinere’s Disease/ Endolymphatic Hydrops. Journal of the American Academy of Audiology, 17(1), 45-68.
Friedrichs, I., & Thornton, A.R.D. (2006). Evidence of incipient disease in asymptomatic ears in unilateral Meniere’s disease and clinical signs. International Congress Series, 1240, 15-21.
Gorga, M.P., Johnson, T.A., Kaminski, J.R., Beauchaine, K.L., Garner, C.A., & Neely, S.T. (2006). Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds. Ear & Hearing, 27, 60-74.
Gould, H.J., & Sobhy, O.A. (1992). Using the derived auditory brain stem response to estimate travelinging wave velocity. Ear Hearing, 13(2), 96-101.
Greven, A.J., & Oosterveld, W.J. (1975). The contralateral ear in Meniere’s disease: A survey of 292 patients. Archives Otolaryngology, 101, 608-612.
Hemmert, W., Zenner, H.P., & Gummer, A.W. (2000). Characteristics of the travelinging wave in the low-frequency region of a temporal-bone preparation of the guinea-pig cochlea. Hearing Research, 142, 184-202.
Hough, D., & Baker, R.S. (2004). Amplitude effects on electrocochleography outcomes. Laryngoscope, 114(10), 1780-1784.
Ichimiya, I., Adams, J.C., & Kimura, R.S. (1994). Immunolocalization of Na+, K+-ATPase, Ca(++)-ATPase, carbonic anhydrase, and calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta-Oto-Laryngological. 114(2), 167-176.
Ikino, C.M.Y. & de Almeida, E.R. (2006). Summating potential-action potential waveform amplitude and width in the diagnosis of Meniere disease. Laryngoscope, 116, 1766-1769.
Kim, Y., Aovagi, M., & Koike, Y. (1994). Measurement of cochlear basilar membrane travelinging wave velocity by derived ABR. Acta Otolaryngology Supplement, 511, 71-6.
Levine, S., Margolis, R.H., & Daly, K.A. (1998). Use of electrocochleography in the diagnosis of Meniere's disease. Laryngoscope, 108 (7), 993-1000.
Magliulo, G., Cuiuli, G., Gagliardi, M., Ciniglio-Appiani, G., & D’Amico, R. (2004). Vestibular evoked myogenic potentials and glycerol testing. Laryngoscope, 114, 338-343.
Mancini, F., Catalani, M., Carru, M., & Monti, B. (2002). Histology of Meniere disease and its clinical presentation. Otolaryngological Clinics of North America, 35, 565-580.
Merchant, S.N., Adams, J.C., & Nadol, J.B. (2005). Pathology of Meniere’s syndrome: Are symptoms caused by endolymphatic hydrops?. Otology & Neurology, 26, 74-81.
Mori, N., Asai, H., & Sakagami, M. (1990). Relationship between results of electrocochleography and caloric test in Meniere’s disease. Journal for Oto-Rhino-Laryngology and its related Specialties,52, 281-285.
Murray, J.G., Cohn, E.S., Harker, L.A., & Gorga , M.P. (1998). Tone burst auditory brain stem response latency estimates of cochlear traveling time in Meniere’s disease, cochlear hearing loss, and normal ears. The American Journal of Otology, 19, 854-859.
Nadol, J.B.Jr., Adams, J.C., & Kim, J.R. (1995). Degenerative changes in the organ of Corti and lateral cochlear wall in experimental endolymphatic hydrops and human Meniere’s disease. Acta-Oto-Laryngological Supplement. 519,47-59.
Nageris, B., Adams, J.C., & Merchant, S.N. (1996). A human temporal bone study of changes in the basilar membrane of the apical turn in endolymphatic hydrops. The American Journal of Otology, 17, 245-252.
Nishida, H., Kawashima, Y., Nofuchi, Y., Tokano, H. & Kitamura, K. (2004). Comparison of acute low-tone sensorineural hearing loss versus Meniere’s disease by electrocochleography. Annals Otology, Rhinology, & Laryngology, 113, 194-199.
Parker, D.J., & Thornton, A.R.D. (1978). The validity of the derived cochlear nerve and brainstem evoked responses of the human auditory system. Scandinavian Audiolog,7, 45-52.
Parker, D.J., & Thornton, A.R.D. (1978). Cochlear travelinging wave velocities calculated from the derived components of the cochlear nerve and brainstem evoked responses of the human auditory system. Scandinavian Audiolog,7, 67-70.
Perez, R., Chen, J.M., & Nedzelski, J.M. (2004). The status of the contralateral ear in established unilateral Meniere’s disease. Laryngoscope, 114, 1373-1375.
Pou, M.A., Hirsch, B.E., Durrant, J.D., Gold, S.R., & Kamerer, D.B. (1996). The efficacy of tympanic electrocochleography in the diagnosis of endolymphatic hydrops. The American Journal of Otology, 17, 607-611.
Ries, D., Rickert, M., & Schlauch, R.S. (1999). The peaked audiometric configuration in Meniere’s disease: Disease related?. Journal of Speech, Language, and Hearing Research, 42 (4), 829-843.
Sando, I., Orita, Y., & Hirsch, B.E. (2002). Pathology and pathophysiology of Meniere’s disease. Otolaryngologic Clinics of North America, 35, 517-528.
Sass, K., Densert. B., Magnusson, M., & Whitaker, S. (1998). Electrocochleographic signal analysis: Condensation and rarefaction click stimulation contributes to diagnosis in Meniere’s disorder. Audiology, 37, 198-206.
Semaam, M.T., Alagramam, K.N., & Megerian, C.A. (2005). The basic science of Meniere’s disease and endolymphatic hydrops. Current Opinion in Otolaryngology & Head and Neck Suegery, 13, 301-307.
Serbetcioglu, M., & Parker, D.J., (1999). Measures of cochlear travelingling wave delay in human: I. Comparison of the three techniques in subjects with normal hearing. Acta-Oto-Laryngological. 119(5), 537-543.
Shore, S.E., & Nuttall, A.L. (1985). High-synchrony cochlear compound action potentials evoked by rising frequency-sweep tone bursts. Journal of Acoustic Society of American, 78 (4), 1286-1295.
de Sousa, L.C.A., de Toledo Piza, M.R., & da Costa, S.S. (2002). Diagnosis of Meniere’s disease: Routine and extended tests. Otolatyngologic Clinics of North America, 35, 547-56.
Staller, S.J., Goin, D.W., Mischke, R.E., & Asher, D.L. (1982). Summating potential in Meniere’s disease. Larygoscope, 92, 1383-1389.
Teas, D.C., Eldredge, D.H., & Davis, H. (1962). Cochlear responses to acoustic transients: An interpretation of whole-nerve action potentials. The Journal of the Acoustical Society of America, 34, 1438-1450.
Thornton, A.R.D., & Farrel, G. (1991). Apparent travelinging wave velocity changes in case of endolymphatic hydrops. Scandinavian Audiology, 20, 13-18.
Thornton, A.R., Farrell, G., Phillips, A.J., Haacke, N.P., & Rhys-William, S. (1989). Verification of a new test of endolymphatic hydrops. Journal of Laryngology & Otology, 103 (12), 1136-1139.
Tsutsumi, T., Kobayashi, M., Koda, H., & Kitamura, K. (2003). Clinical characteristics of audio-vestibular impairment in Meniere disease: Does vestibular function deteriorate in accordance with cochlear function?. Acta Otolaryng bology, 123, 396-400.
Valk, W.L., Wit, H.P., & Albers, F.W.J. (2006). Rupture of Reissner’s membrane during acute endolymphatic hydrops in the guinea pig: A model for Meniere disease ?. Acta Oto-Laryngology, 126, 1030-1035.
Young, Y.H., Huang, T.W., & Cheng, P.W. (2003). Assessing the stage of Meniere’s disease using vestibular evoked myogenic potentials. Arch otolaryngology-Head and Neck Surgery, 129, 815-818.
Zhou, G. & Cox, L.C. (2004). Vestibular evoked myogenic potentials : History and overview. American Journal of Audiology, 13 (2), 135-143.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top