跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張縱輝
研究生(外文):Tsung-Hui Chang
論文名稱:在未知塊狀衰減通道中OSTBC-OFDM系統之最大勢然偵測
論文名稱(外文):Maximum-Likelihood Detection of Orthogonal Space-Time Block Coded OFDM in Unknown Block Fading Channels
指導教授:祁忠勇馬榮健
指導教授(外文):Chong-Yung ChiWing-Kin Ma
學位類別:博士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:102
中文關鍵詞:正交分頻多工最大勢然偵測盲蔽偵測正交空時碼鑑別性
外文關鍵詞:OFDMMaximum-likelihood detectionOSTBCBlind detectionidentifiability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
For orthogonal space-time block coded orthogonal
frequency division multiplexing (OSTBC-OFDM) systems, many of the existing blind detection and channel estimation methods rely on the fundamental assumption that the channel is static for many OSTBC-OFDM blocks. This thesis considers the blind (semiblind) maximum-likelihood (ML) detection problem of OSTBC-OFDM with a single OSTBC-OFDM block only. The merit of such an investigation is the ability to accommodate channels with shorter coherence time. We examine both the implementation and identifiability issues, with a focus on BPSK/QPSK constellations. In the implementation, we propose reduced-complexity detection schemes using subchannel grouping. In the identifiability analysis, we show that under independently and
identically distributed (i.i.d.) Rayleigh fading channels the proposed schemes can ensure a probability one identifiability condition using a very small number of pilots. The second part of this study is to devise transmission schemes that guarantee any nonzero channel to be uniquely identifiable by the blind ML detector, referred to as ``perfect channel identifiability (PCI)" scheme. We show that the PCI schemes can be constructed by employing
the so-called nonintersecting subspace (NIS) code proposed by Oggier. Moreover, for i.i.d. Rayleigh fading channels, it
can be analytically shown that the PCI schemes achieve full transmit diversity, even when the receiver does not have the channel state information. Extension of the PCI schemes as well as the blind ML detector to the distributed OSTBC-OFDM system is also investigated in the thesis.
現存大多數針對正交空時區塊碼正交分頻多工(orthogonal space-time block coded orthogonal frequency division multiplexing, OSTBC-OFDM)系統的盲蔽檢測與通道估測技術皆基於一根本假設,通道(channel)在多個OSTBC-OFDM區塊區間內為靜止不變的。本論文考量只需使用一個OSTBC-OFDM區塊信號之盲蔽最大勢然檢測(maximum-likelihood (ML) detection)技術。此技術的優點在於其更適合應用於具有較短同調時間(coherence time)的通道環境。基於BPSK/QPSK符碼調變,我們探討包括接收機實現(receiver implementation)及盲蔽唯一資料鑑別(blind unique data identifiability)的問題。對於接收機實現問題,我們提出降底複雜度的子通道群組(subchannel grouping)檢測機制。對於盲蔽唯一資料鑑別,我們證明所提出的檢偵機制在獨立瑞立衰減通道(Rayleigh fading channels)中只需使用非常少量的前導資料(pilot data)就能保證資料鑑別的唯一性。
本論文的第二部分更進一步針對任意非全零的通道環境,發展能夠在盲蔽接收機唯一鑑別通道的傳輸機制,我們證之為「完美之通道鑑別」(perfect channel identifiability, PCI)機制。我們證明只要使用所謂的子空間無交集碼(nonintersecting subspace codes)就能達到所期望的完美通道鑑別。此外,我們分析證明在獨立瑞立衰減通道中,此完美之通道鑑別傳輸機制能夠保證盲蔽最大勢然檢測器獲得最大之空間分集增益(spatial diversity gain)。最後,我們將所提出的完美之通道鑑別傳輸機制以及所提出之盲蔽最大勢然檢測器延伸到分散式空時編碼(distributed space time coding)系統。
Chinese Abstract ii
Abstract iii
Acknowledgments iv
List of Figures viii
1 Introduction 1
2 MIMO OSTBC Systems: A Review 6
2.1 MIMO OSTBC Signal Model . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Coherent ML OSTBC Detection . . . . . . . . . . . . . . . . . 9
2.1.2 Full Coherent Transmit Diversity of OSTBC . . . . . . . . . . 10
2.2 Noncoherent ML OSTBC Detection . . . . . . . . . . . . . . . . . . . 11
2.2.1 Why Blind (Noncoherent) Detection? . . . . . . . . . . . . . . 12
2.2.2 Blind ML OSTBC Detection . . . . . . . . . . . . . . . . . . . 14
2.2.3 Semidefinite Relaxation Approximation Method . . . . . . . . 17
2.2.4 Unique Data Identifiability of OSTBC . . . . . . . . . . . . . 19
2.2.5 Nonintersecting Subspace Code and Perfect Data Identifiability 21
2.2.6 Full Blind Transmit Diversity . . . . . . . . . . . . . . . . . . 25
2.3 Extension to Semiblind ML Detection . . . . . . . . . . . . . . . . . . 26
vi
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 Blind/Semiblind ML Detection of OSTBC-OFDM Systems 31
3.1 OSTBC-OFDM Signal Model and Background . . . . . . . . . . . . . 32
3.1.1 OSTBC-OFDM Signal Model . . . . . . . . . . . . . . . . . . 32
3.1.2 Subchannel-wise Blind ML Detection for Slow Fading Channels 34
3.2 Blind ML OSTBC-OFDM Detection in One Block: An Overview . . 35
3.2.1 Basic Problem Formulation . . . . . . . . . . . . . . . . . . . 35
3.2.2 Subchannel Grouping OSTBC-OFDM . . . . . . . . . . . . . 38
3.3 Blind ML Receiver Realization via A Unified Treatment . . . . . . . . 41
3.4 Blind ML Identifiability Analysis . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Review and Generalization of Some Existing Results . . . . . 46
3.4.2 Identifiability of OSTBC-OFDM . . . . . . . . . . . . . . . . 48
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Perfect Channel Identifiability OSTBC-OFDM Schemes 57
4.1 Perfect Channel Identifiability (PCI) Schemes . . . . . . . . . . . . . 57
4.1.1 Proposed PCI schemes . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Necessary Condition for PCI . . . . . . . . . . . . . . . . . . . 61
4.1.3 Diversity Analysis of PCI code schemes . . . . . . . . . . . . . 63
4.2 Extension to Distributed OSTBC-OFDM Systems . . . . . . . . . . . 67
4.2.1 Distributed OSTBC-OFDM Signal Model and Background . . 67
4.2.2 Blind ML Detection of DOSTBC-OFDM . . . . . . . . . . . . 69
4.2.3 Application of PCI Schemes and Diversity Analysis . . . . . . 70
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5 Conclusions and Future Works 77
vii
A Proofs of Theorems and Lemmas in Chapter 3 80
A.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.2 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.3 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.4 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.5 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B Proofs of Theorems and Lemmas in Chapter 4 88
B.1 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.2 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.3 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Bibliography 95
Publication List of The Author 101
[1] F. E. Oggier, N. J. A. Sloane, S. N. Diggavi, and A. R. Calderbank, “Nonintersecting subspaces based on finite alphabets,” IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4320–4325, Dec. 2005.
[2] D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: An overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 281–302, April 2003.
[3] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri, “Space-time coded OFDM for high data-rate wireless communication over wideband channels,” in Proc.
IEEE Vehicular Tech. Conf., vol. 3, Ottawa, Ont., Canada, May 18-21, 1998,
pp. 2232–2236.
[4] Y. Gong and K. B. Letaief, “Low complexity channel estimation for space-time
coded wideband OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 5,
pp. 876–882, Sept. 2003.
[5] Z. Liu, Y. Xin, and G. B. Giannakis, “Space-time-frequency coded OFDM over
frequency-selective fading channels,” IEEE Trans. Signal Process., vol. 50, no. 10,
pp. 2465–2476, Oct. 2002.
[6] S. Zhou, B. Muquet, and G. B. Giannakis, “Subspace-based (semi-) blind channel
estimation for block precoded space-time OFDM,” IEEE Trans. Signal Process.,
vol. 50, no. 2, pp. 1215–1228, May 2002.
[7] J. Guo, L. Jiang, Y. Gou, and X. Meng, “Blind channel estimator for MIMOOFDM systems based on linear non-redundant precoding,” in Proc. IEEE Wireless Commun. and Networking Conf., vol. 1, New Orleans, LA, Sept. 23-26, 2005, pp. 44–47.
[8] Y. Zeng, W. H. Lam, and T. S. Ng, “Semiblind channel estimation and equalization
for MIMO space-time coded OFDM,” IEEE Trans. Circuits and Systems-I,
vol. 53, no. 2, pp. 463–474, Feb. 2006.
[9] S. N. Diggavi, N. Al-Dhahir, A. Stamoulis, and A. R. Calderbank, “Differential
space-time coding for frequency-selective channels,” IEEE Commun. Lett., vol. 6,
no. 6, pp. 253–255, June 2002.
[10] H. Li, “Differential space-time modulation over frequency-selective channels,”
IEEE Trans. Signal Process., vol. 53, no. 6, pp. 2228–2242, June 2005.
[11] Q. Ma, C. Tepedelenlioglu, and Z. Liu, “Differential space-time-frequency coded
OFDM with maximum multipath diversity,” IEEE Trans. Wireless Commun.,
vol. 4, no. 5, pp. 2232–2243, Sept. 2005.
[12] Z. Liu, G. B. Giannakis, S. Barbarossa, and A. Scaglione, “Transmit-antenna
space-time block coding for generalized OFDM in the presence of unknown multipath,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 1352–1364, July
2001.
[13] M. Uysal, N. Al-Dhahir, and C. N. Georghiades, “A space-time block-coded
OFDM scheme for unknown frequency-selective fading channels,” IEEE Com-
mun. Lett., vol. 5, no. 10, pp. 393–395, Oct. 2001.
[14] D. M. Terad and R. P. T. Jimenez, “Channel estimation for STBC-OFDM systems,” in Proc. IEEE Workshop Signal Process. Advances in Wireless Commun.,
Lisbon, Portugal, July 11-14, 2004, pp. 283–287.
[15] E. G. Larsson, P. Stoica, and J. Li, “On maximum-likelihood detection and
decoding for space-time coding systems,” IEEE Trans. Signal Process., vol. 50,
no. 4, pp. 937–944, April 2002.
[16] ——, “Orthogonal space-time block codes: Maximum likelihood detection for
unknown channels and unstructured interferences,” IEEE Trans. Signal Process.,
vol. 51, no. 2, pp. 362–372, Feb. 2003.
[17] S. Shahbazpanahi, A. Gershman, and J. Manton, “Closed-form blind MIMO
channel estimation for orthogonal space-time block codes,” IEEE Trans. Signal
Process., vol. 53, no. 12, pp. 4506–4517, Dec. 2005.
[18] W.-K. Ma, B.-N. Vo, T. N. Davidson, and P.-C. Ching, “Blind ML detection
of orthogonal space-time block codes: Efficient high-performance implementations,”
IEEE Trans. Signal Process., vol. 54, no. 2, pp. 738–751, Feb. 2006.
[19] T. Cui and C. Tellambura, “Efficient blind receiver design for orthogonal spacetime block codes,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1890–1899, May 2007.
[20] L. Zhou, J.-K. Zhang, and K.-M. Wong, “A novel signaling scheme for blind
unique identification of Alamouti space-time block-coded channel,” IEEE Trans.
Signal Process., vol. 55, no. 6, pp. 2570–2582, June 2007.
[21] W.-K. Ma, “Blind ML detection of orthogonal space-time block codes: Identifiability and code construction,” IEEE Trans. Signal Process., vol. 55, no. 7, pp.
3312–3324, July 2007.
[22] N. Ammar and Z. Ding, “Channel identifiability under orthogonal space-time
coded modulations without training,” IEEE Trans. Wireless Commun., vol. 5,
no. 5, pp. 1003–1013, May 2006.
[23] J. Via and I. Santamaria, “Some results on the blind identifiability of orthogonal
space-time blocks from second order statistics,” in Proc. IEEE ICASSP, vol. 3,
Honolulu, Hawaii, April 15-20, 2007, pp. III–313–III–316.
[24] N. Ammar and Z. Ding, “Blind channel identifiability for generic linear spacetime block codes,” IEEE Trans. Signal Process., vol. 55, no. 1, pp. 202–217, Jan.
2007.
[25] T. Cui and C. Tellambura, “Joint data detection and channel estimation for
OFDM systems,” IEEE Trans. Commun., vol. 54, no. 4, pp. 670–679, April
2006.
[26] T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Group-wise blind OFDM ML detection
for complexity reduction,” in Proc. 14th European Signal Process. Conf.,
Florence, Italy, Sept. 4-8, 2006.
[27] “Digital video broadcasting (DVB): Transmission system for handheld terminals
(DVB-H),” ETSI EN 302 304 v1.1.1, Nov. 2004.
[28] Z. Wu, J. He, and G. Gu, “Design for optimal pilot-tones for channel estimation
in MIMO-OFDM systems,” in Proc. IEEE Wireless Commun. and Networking
Conf., vol. 1, New Orleans, LA, Sept. 23-26, 2005, pp. 12–17.
[29] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3534–3536, Dec.
2006.
[30] T. Wang, Y. Yao, and G. B. Giannakis, “Non-coherent distributed space-time
processing for multiuser cooperative transmissions,” IEEE Trans. Wireless Com-
mun., vol. 5, no. 12, pp. 3339–3343, Dec. 2006.
[31] S. Yiu, R. Schober, and L. Lampe, “Distributed space-time block coding,” IEEE
Trans. Commun., vol. 54, no. 7, pp. 1195–1206, July 2006.
[32] S. Barbarossa and G. Scutari, “Distributed space-time coding strategies for wideband multihop networks: Regenerative vs. nonregenerative relays,” in Proc.
IEEE ICASSP, vol. 4, Montreal, Quebec, Canada, May 17-21, 2004, pp. 501–504.
[33] P. A. Anghel, G. Leus, and M. Kaveh, “Distributed space-time cooperative systems with regenerative relays,” IEEE Trans. Wireless Commun., vol. 5, no. 11,
pp. 3130–3141, Nov. 2006.
[34] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols
for exploiing cooperative diversity in wireless networks,” IEEE Trans. Inform.
Theory, vol. 49, no. 10, pp. 2415–2525, Oct. 2003.
[35] B. Sirkeci-Mergen and A. Scaglione, “Randomized space-time coding for distributed cooperative communication,” IEEE Trans. Signal Process., vol. 55, no. 10,
pp. 5003–5017, Oct. 2007.
[36] H. Mheidat and M. Uysal, “Distributed space-time block coded OFDM for relayassisted transmission,” in Proc. IEEE ICC, Istanbul, Turkey, 11-15 June, 2006,
pp. 4513–4519.
[37] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[38] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from
orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456–1467,
July 1999.
[39] G. Ganasan and P. Stoica, “Space-time block codes: A maximum SNR approach,”
IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1650–1656, May 2001.
[40] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communi-
cations. Cambridge UK: Cambridge University Press, 2003.
[41] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high
data rate wireless communication: Performance criterion and code construction,”
IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744 – 765, March 1998.
[42] P. Stoica and G. Ganesan, “Space-time block codes: Trained, blind, and semiblind
detection,” Digital Signal Process., vol. 13, pp. 93–105, 2003.
[43] A. L. Swindlehurst and G. Leus, “Blind and semi-blind equalization for generalized space-time block codes,” IEEE Trans. Signal Process., vol. 50, no. 10, pp.
2489–2498, Oct. 2002.
[44] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. The-
ory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.
[45] G. Ganesan and P. Stoica, “Differential detection based on space-time block
codes,” Wireless Perosnal Commun., Norwell, MA: Kluwer, 2002, pp. 163-180.
[46] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood detection
and the search for the closest lattice point,” IEEE Trans. Inform. Theory, vol. 49,
no. 10, pp. 2389–2402, Oct. 2003.
[47] J. Jalden and B. J. Ottersten, “On the complexity of sphere decoding in digital
communications,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1474–1484,
April 2005.
[48] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for
maximum cut and satisfiability problem using semi-definite programming,” J.
ACM, vol. 42, pp. 1115–1145, 1995.
[49] W.-K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P.-C. Ching, “Quasimaximum-likelihood multiuser detection using semidefinite relaxation with application to synchronous CDMA,” IEEE Trans. Signal Process., vol. 50, no. 4,
pp. 912–922, April 2002.
[50] N. D. Sidiropoulos, T. D. Davidson, and Z.-Q. Luo, “Transmit beamforming
for physical-layer multicasting,” IEEE Trans. Signal Process., vol. 54, no. 6, pp.
2239–2251, June 2006.
[51] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Quality of service and max-minfair transmit beamforming to multiple co-channel multicast groups,” to appear in IEEE Trans. Signal Processing.
[52] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beamforming,” Chapter 18 in Handbook of Antennas in Wireless Communications, L. C.
Godara, Ed., CRC Press, Aug. 2001.
[53] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
[54] M. V. S. Talwar and A. Paulraj, “Blind separation of synchronous co-channel
digital signals using an antenna array Part I: Algorithms,” IEEE Trans. Signal
Process., vol. 44, pp. 1184–1197, 1996.
[55] B. Hochwald and T. Marzetta, “Unitary space-time modulation for multipleantenna communications in rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 543–564, March 2000.
[56] L. Zheng and D. N. C. Tse, “Communications on the Grassman manifold: A
geometric approach to the noncoherent multiple-antenna channel,” IEEE Trans.
Inform. Theory, vol. 48, no. 2, pp. 359–383, Feb. 2002.
[57] R. Horn and C. Johnson, Matrix Analysis. Cambridge U.K.: Cambridge University Press, 1990.
[58] Y. Yu, G. B. Giannakis, and N. Jindal, “Information-bearing noncoherently modulated pilots for MIMO training,” IEEE Trans. Inform. Theory, vol. 53, no. 3,
pp. 1160–1168, March 2007.
[59] J. Via and I. Santamaria, “On the blind identifiability of orthogonal space-time
block codes from second order statistics,” IEEE Trans. Inform. Theory, vol. 54,
no. 2, pp. 709–722, Feb. 2008.
[60] E. Akay and E. Ayanoglu, “Achieving full frequency and space diversity in wireless systems vis BICM, OFDM, STBC and Viterbi decoding,” IEEE Trans. Com-
mun., vol. 54, no. 12, pp. 2164–2172, Dec. 2006.
99
[61] B. Lu, X.Wang, and Y. Li, “Iterative receivers for space-time block-coded OFDM
systems in dispersive fading channels,” IEEE Trans. Wireless Commun., vol. 1,
no. 2, pp. 213–225, April 2006.
[62] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications: Where
Fourier meets Shannon,” IEEE Signal Process. Mag., vol. 17, no. 3, pp. 29–48,
May 2000.
[63] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile
OFDM system,” IEEE Trans. Consumer Electronics, vol. 44, no. 3, pp. 1122–
1128, Aug. 1998.
[64] I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO
OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process.,
vol. 51, no. 6, pp. 1615–1624, June 2003.
[65] X.-B. Liang, “Orthogonal designs with maximal rates,” IEEE Trans. Inform.
Theory, vol. 49, no. 10, pp. 2468–2503, Oct. 2003.
[66] T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Semiblind ML OSTBC-OFDM detection in block fading channels,” in Proc. IEEE ICASSP, vol. 3, Honolulu, Hawaii,
April 15-20, 2007, pp. III–309–III–312.
[67] ——, “Maximum-likelihood detection of orthogonal space-time block coded
OFDM in unknown block fading channels,” IEEE Trans. Signal Process., vol. 56,
no. 4, pp. 1637–1649, April 2008.
[68] A. Scaglione and Y.-W. Hong, “Opportunistic large arrays: Cooperative transmission in wireless multihop adhoc networks to reach far distrances,” IEEE
Trans. Signal Process., vol. 51, no. 8, pp. 2082–2092, Aug. 2003.
[69] W.-K. Ma, P.-C. Ching, and Z. Ding, “Semidefinite relaxation based multiuser
detection for M-ary PSK multiuser systems,” IEEE Trans. Signal Process.,
vol. 52, no. 10, pp. 2862–2872, Oct. 2004.
[70] C.-W. Hsin, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “A linear fractional semidefinite relaxed ML approach for blind detection of 16-QAM orthogonal space
time block codes,” in Proc. IEEE ICC, Beijing, China, May 19-23, 2008.
[71] H. Stark and J. W. Woods, Probability and Random Processes with Applications
to Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊