跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 10:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊華
研究生(外文):Chon-Wa Wong
論文名稱:Non-CancellationMultistageKurtosisMaximizationwithPrewhiteningforBlindSourceSeparation
論文名稱(外文):預白化非消除多階段峰度最大化之盲蔽信號源分離法
指導教授:祁忠勇
指導教授(外文):Chong-Yung Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:41
中文關鍵詞:峰度最大化預白化盲蔽信號源分離非消除多階段
外文關鍵詞:blind source separationBSSTSEAFKMANCMS-TSEANCMS-FKMAPNCMS-TSEAPNCMS-FKMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
Chi et al. recently proposed two effective non-cancellation multistage (NCMS) blind source separation algorithms, one using the turbo source extraction algorithm (TSEA), called the NCMS-TSEA, and the other using the fast kurtosis maximization algorithm (FKMA), called the NCMS-FKMA. Their computational complexity and performance heavily depend on the dimension of multi-sensor data, i.e., number of sensors. This thesis proposes the inclusion of the prewhitening processing in the NCMS-TSEA and NCMS-FKMA before performing source extraction. We come up with two improved algorithms, referred to as PNCMS-TSEA and PNCMS-FKMA with significant computational savings on one hand, and some performance improvements on the other hand (owing to dimension reduction and noise reduction by prewhitening processing), especially when the number of sensors is much larger than the number of sources. Two implementation structures for the proposed PNCMS-TSEA and PNCMS-FKMA are considered. One is parallel structure (denoted as PNCMS-TSEA(p) and PNCMS-FKMA(p)) and the other is sequential structure (denoted as PNCMS-TSEA(s) and PNCMS-FKMA(s)). The performances of PNCMS-TSEA(p) (PNCMS-FKMA(p)) and PNCMS-TSEA(s) (PNCMS-FKMA(s)) are the same while the former is well suited to software and hardware implementations thanks to much smaller processing latency. Some simulation results are presented to verify the efficacy and computational efficiency of the proposed algorithms.
CHINESE ABSTRACT i
ABSTRACT ii
ACKNOWLEDGMENTS iii
CONTENTS iv

1 INTRODUCTION 1
2 PROBLEM STATEMENT AND ASSUMPTIONS 4
3 REVIEWOF FKMA, TSEA, NCMS-FKMA AND NCMS-TSEA 7
3.1 FKMA . . . . . . . . . . . . . . . . . . . 7
3.2 TSEA . . . . . . . . . . . . . . . . . . . 8
3.3 NCMS-FKMA and NCMS-TSEA . . . . . . . . . . 9
4 NON-CANCELLATION MULTISTAGE SOURCE SEPARATION
ALGORITHMSWITH PREWHITENING 11
5 SIMULATION RESULTS 20
6 TESTWITH SPEECH SIGNALS 31
7 CONCLUSION 36
APPENDIX A 38
REFERENCES 39
[1] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, "A blind source separation technique using second-order statistics," IEEE Transactions on Signal Processing, vol. 45, no. 2, pp. 434-444, Feb. 1997.

[2] L. Tong, V. C. Soon, Y.-F. Huang, and R.-W. Liu,
"AMUSE: A new blind identification algorithm," in Proc. IEEE International Symposium on Circuits and Systems, New Orleans, LA, May 1-3, 1990, pp. 1784-1787.

[3] C. Chang, Z. Ding, S. F. Yau, and F. H. Y. Chan,
"A matrix-pencil approach to blind separation of non-white sources in white noise," in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Seattle, WA, May 12-15, 1998, pp. 2485-2488.

[4] P. Comon, "Independent component analysis, a new concept?," Signal Process., vol. 36, pp. 287-314, Apr. 1994.

[5] A. Hyvarinen and J. Karhunen and E. Oja, "Independent Component Analysis". Signal Process. New York: John Wiley, 2001.

[6] L. Tong, R.-W. Liu, V. C. Soon, and Y.-F. Huang,
"Indeterminacy and identifiability of blind idenification," IEEE Transactions on Circuits and Systems}, vol. 38, no. 2, pp. 499-509, May 1991.

[7] N. Delfosse and P. Loubaton, "Adaptive blind separation of independent sources: A deflation approach," Signal Process., vol. 45, pp. 59-83, Feb. 1995.

[8] C. L. Nikias and A. P. Petropulu, Higher-Order Spectral Analysis: A Nonlinear Signal ProcessingFramework. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[9] J.-F. Cardoso, "Source separation using higher order moments," in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Glasgow, U.K., May 23-26, 1989, pp. 2109-2112.

[10] A. Hyvarinen and E. Oja, "A fixed-point algorithm for independent component analysis," Neur. Comput., vol. 9, pp. 1483-1492, 1997.

[11] Z. Ding, "A new algorithm for automatic beamforming," in Proc. 25th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 4-6, 1991, pp. 689-693.

[12] Y. Inouye and K. Tanebe, "Super-exponential algorithms for multichannel blind deconvolution," IEEE Transactions on Signal Processing, vol. 48, no. 3, pp. 881-888, Mar. 2000.

[13] Z. Ding and T. Nguyen, "Stationary points of a kurtosis maximization algorithm for blind signal separation and antenna beamforming," IEEE Transactions on Signal Processing, vol. 48, no. 6, pp. 1587-1596, Jun. 2000.

[14] C.-Y. Chi and C.-Y. Chen, "Blind beamforming and maximum ratio combining by kurtosis maximization for source separation in multipath," in Proc. IEEE Workshop on Signal Processing Advances for Wireless Communications, Taoyuan, Taiwan, R.O.C., Mar. 20-23, 2001, pp. 243-246.

[15] C.-Y. Chi, C.-Y. Chen, C.-H. Chen, and C.-C. Feng,
"Batch processing algorithms for blind equalization using
higher-order statistics," IEEE Signal Process. Mag., vol. 20, no. 1, pp. 25-49, Jan. 2003.

[16] K. Yang, T. Ohira, Y. Zhang, and C.-Y. Chi,
"Super-exponential blind adaptive beamforming," IEEE
Transactions on Signal Processing, vol. 52, no. 6, pp. 1549-1563, Jun. 2004.

[17] J.-F. Cardoso, "Infomax and maximum likelihood for blind source separation," IEEE Signal Process. Lett., vol. 4, no. 4, pp. 112-114, Apr. 1997.

[18] K. Matsuoka and M. Kawamoto, "A neural net for blind separation of nonstationary signal sources," in Proc. IEEE Int. Conf. on Neural Networks, vol. 1, Orlando, FL, Jun. 27-Jul. 2, 1994, pp. 221-232.

[19] S. Choi and A. Cichocki, "Blind separation of nonstationary and temporally correlated sources from noisy mixtures," in Proc. IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing, vol. 1, Sydney, NSW, Australia, Dec. 11-13, 2000, pp. 405-414.

[20] D.-T. Pham and J.-F. Cardoso, "Blind separation of instantaneous mixtures of nonstationary sources," IEEE Transactions on Signal Processing, vol. 49, no. 9, pp. 1837-1848, Sep. 2001.

[21] J. Zhang, L. Wei, and Y. Wang, "Computational decomposition of molecular signatures based on blind
source separation of non-negative dependent sources with NMF," in Proc. IEEE Workshop on Neural Networks for Signal Processing, Sep. 17-19, 2003, pp. 409-418.

[22] C.-Y. Chi and C.-H. Peng, "Turbo source extraction algorithm and noncancellation source separation algorithms by kurtosis maximization," IEEE Transactions on Signal Processing, vol. 54, no. 9, pp. 2929-2942, Aug. 2006.

[23] C.-Y. Chi, C.-C. Feng, C.-H. Chen, and C.-Y. Chen,
Blind Equalization and System Identification. London:
Springer Verlag, 2006.

[24] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University Press, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top