(34.204.173.45) 您好!臺灣時間:2019/10/15 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:黃學聰
研究生(外文):Shyue-Tsong Huang
論文名稱:樟芝與靈芝木質分解酵素基因之選殖與表現
論文名稱(外文):Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomeaand a versatile peroxidase gene from poroid white-rot fungus Ganoderma lucidum
指導教授:蔡碧雲
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:235
中文關鍵詞:樟芝靈芝木質分解酵素基因選殖異物種表現
外文關鍵詞:Antrodia cinnamomeaGanoderma lucidumligninolytic peroxidaseversatile peroxidasegene cloningheterologous expression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:824
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
樟芝與靈芝在台灣均為十分著名的藥用真菌,關於其醫藥上的應用與生理活性的試驗研究一直未曾中斷,然而,關於樟芝與靈芝在侵染寄主的相關研究卻一直不多,本研究針對褐腐與白腐此兩種真菌,對其殖據侵染基因進行研究,主要著重在木質分解酵素的選殖與表現。研究結果顯示,樟芝之木質分解酵素基因為首次在褐腐菌中得到並加以表現,其基因全長為1183 bp,open reading frame 為 990 bp,而genomic DNA全長為2111 bp,並且有12個introns。蛋白質序列經3-D模擬比對後,發現其蛋白質結構較接近Pleurotus eryngii之versatile peroxidase,以pQE31表現載體表現後為38kDa,進一步純化後並與樟芝胞外蛋白初萃物進行酵素活性分析,發現此蛋白質可以氧化vetrayl alcohol,並且對bromophenol blue 與 2, 6-dimethoxyphenol 人工合成染劑進行脫色,顯示確有木質分解酵素的活性。若進一步設計專一引子,針對其他褐腐菌進行PCR分析並定序,結果顯示十種褐腐菌除了樟芝外,尚有A. salmonea 及 A. vaillantii與white rot fungi的木質分解酵素比對出同源性很高的基因序列,顯示尚有其他褐腐菌具有木質分解酵素基因,若以不同人工染劑進行其分解活性測試,A. vaillantii可對bromophenol blue 與 2, 6-dimethoxyphenol進行脫色,A. salmonea亦可對bromophenol blue進行脫色,同時,A. xantha更可分解2,2’-azino-bis-3-ethylbenzothiazline -6-sulphnic acid (ABTS)與guaiacol等,顯示其具有Laccase與木質分解酵素的活性。實驗並以樟芝接種於寄主牛樟木塊,以SEM進行顯微觀察,發現於接種初期樟芝會分泌草酸協助其侵入,侵入後破壞寄主牛樟細胞壁,造成許多入侵的小孔洞。研究的另一方向為靈芝的木質分解酵素,結果顯示靈芝木質分解酵素之基因全長為1340 bp,open reading frame 為 1092 bp,而genomic DNA全長為2830 bp,並且有11個introns。蛋白質序列經3-D模擬比對後,發現蛋白質結構較接近P. eryngii之versatile peroxidase,以pET21(a)表現載體表現後為43.9 kDa,若以靈芝對不同人工染劑進行其分解活性測試,發現靈芝在培養基中加入Mn離子或vetrayl alcohol時,均可分解guaiacol 及 bromophenol blue,若在培養基中加入vetrayl alcohol時,更可分解remazol brilliant blue R 及 2,6-dimethoxyphenol,顯示其木質分解酵素的性質為versatile peroxidase。綜合研究結果顯示,褐腐菌亦會分泌木質分解酵素,然而表現量遠較白腐菌弱,因此,白腐菌與褐腐菌再也無法以木質分解酵素的有無做二元的區隔,同時,其所對應的傳統形態分類也受到分子類緣演化的挑戰,因此對於多元基因資訊的加入,未來的分類體系經修正後勢必更加完善。
Antrodia cinnamomea and Ganoderma lucidum are two famous medicinal fungi in Taiwan and their medical therapies and biological activities have been studied for a long time. However, the researches of A. cinnamomea and G. lucidum in the invasion of the host plants are still unclear. In this study, we investigated these two fungi, A. cinnamomea and G. lucidum, on the colonization and infection genes especially on cloning and expression of their fungal peroxidase genes. This is the first report on the cloning and expression of the fungal peroxidase gene from A. cinnamomea. The peroxidase gene has not been reported from brown rot fungi. This gene was named ligninolytic peroxidase of A. cinnamomea (ACLnP). The full length of ACLnP gene is 1183 b.p. with 990 b.p. open reading frame and the full length of ACLnP genomic DNA is 2111 b.p. containing 12 introns. Analyzing ACLnP protein 3-D structure showed that its protein structure was closer to versatile peroxidase of Pleurotus eryngii. In addition, ACLnP was ca. 38 kDa and was proven to have ligninolytic activity by decoloration of bromophenol blue and 2, 6-dimethoxyphenol. In order to study the ligninolytic enzyme from 10 species of brown rot fungi, we designed specific primers to perform PCR analysis and then sequenced and annotated form NBCI database. The result revealed that except A. cinnamomea, certain genes from A. salmonea and A. vaillantii also had high homologous with the ligninolytic enzymatic gene from white rot fungi. Furthermore, A. vaillantii had the ability of decoloration of bromophenol blue and 2, 6-dimethoxyphenol; A. salmonea had the ability of decoloration of bromophenol blue, and meanwhile, A. xantha could degrade 2,2’-azino-bis-3-ethylbenzothiazline-6-sulphnic acid (ABTS) and guaiacol, etc. to reveal laccase and fungal peroxidase activities. In addition, the Cinnamomum kanehirai Hey was decayed by A. cinnamomea in the further research observation. In primary invasion, A. cinnamomea would secrete oxalic acid to help invasion to destroy host cell walls and cause many pores as observed with SEM. On the other hand, the full length of the fungal peroxidase gene from G. lucidum, which was named versatile peroxidase of G. lucidum (GLVP), was 1340 b.p. with 1092 b.p. open reading frame and the full length of GLVP genomic DNA was 2830 b.p. including 11 introns. The protein structure was also similar to versatile peroxidase from P. eryngii and the expression of GLVP protein size was 43.9 kDa. The fungal peroxidase from G. lucidum could degrade guaiacol and bromophenol blue under existence of Mn2+ or vetrayl alcohol, as well as could degrade remazol brilliant blue R and 2,6-dimethoxyphenol in the existence of vetrayl alcohol. The result of enzyme activity tests revealed that the fungal peroxidase from G. lucidum had the character of versatile peroxidase. In conclusion, brown rot fungi can secrete fungal peroxidases, no matter the fungal peroxidases expression from brown rot fungi was weaker than from white rot fungi. Therefore, it was inappropriate to distinguish brown rot and white rot fungi by their ability to secrete fungal peroxidase. The traditional taxonomy has been challenged by the evidences of genetic evidences and molecular evolution. In the future, the classification between white rot and brown rot fungi will be improved based on more and more molecular and genomic evidences.
CONTENTS
謝辭.......................................................................................................................................................I
中文摘要.............................................................................................................................................II
ABSTRACT........................................................................................................................................III
CONTENTS........................................................................................................................................V
LIST OF FIGURES………………………………………………………………………..………VII
LIST OF TAEBLES……………………………………………………………………..….………IX
Chapter 1 INTRODUCTION...............................................................................................................1
1.1 Enzyme of deligninfication……………..……………………….………..………………….3
1.2 Ligninolytic systems and patterns……………………………………………..………..……8
1.3 Factors influence delignification……………………………………………..………………9
1.4 Application of wood decay fungi…..………………………………..……………...………15
1.5 Antrodia cinnamomea……………………………………..………………..………………16
1.6 Ganoderma lucidum……………………………………….………………….….…………17
1.7 A. cinnamomea cDNA library……………................................................................………18
1.8 G. lucidum cDNA library........................................................................................................20
Chapter 2 Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea ……………………………..…………...……...23
2.1 ABSTRACT…………………………..…………………………………………………….24
2.2 INTRODUCTION………………………..………………………………….……….……..25
2.3 MATERIALS AND METHODS……………………………..…………………….…….…29
2.4 RESULTS……………………………………..…………………………………………….35
2.5 DISCUSSION.........................................................................................................................40
2.6 REFERENCE……………………………..………………………………………….……..50
2.7 LEGENDS FOR FIGURES…………………………………………………….…………..58
2.8 SUPPLEMENTARY DATA………………………..……………………………………….71
Chapter 3 The evidences of ligninolytic peroxidase in brown rot fungi…………………………....81
3.1 ABSTRACT…………………..………………………………………..……………...……82
3.2 INTRODUCTION…………..………………………………………….……….……..……83
3.3 MATERIALS AND METHODS………………..……………………….……...……..……89
3.4 RESULTS……………………………..……………………………………………...……..95
3.5 DISCUSSION.......................................................................................................................100
3.6 REFERENCE………………………..……………………………………………….……106
3.7 LEGENDS FOR FIGURES………………………..…..……………………….…………115
3.8 SUPPLEMENTARY DATA………………..………………………………………...……126
Chapter 4 Cloning and expression of a versatile peroxidase gene from poroid white-rot fungus Ganoderma lucidum..........................................................................................................136
4.1 ABSTRACT…………………..………………………………………………...…………137
4.2 INTRODUCTION…………..………………………………………………………..……138
4.3 MATERIALS AND METHODS………………..…………………………………………142
4.4 RESULTS……………………………..…………………………………………...………150
4.5 DISCUSSION.......................................................................................................................155
4.6 REFERENCE………………………..……………………………………………….……163
4.7 LEGENDS FOR FIGURES………………………..…..……………………….…………174
4.8 SUPPLEMENTARY DATA………………..………………………………………...……189
REFERENCE……………………………………………………………………………………...206
APPENDIX………………………………………………………………………………………..224
REFERENCE

Abu Ali, R., Murphy, R. J. & Dickinson, D. J. (1999). Investigation of the extracellular mucilaginous materials produced by some wood decay fungi. Mycol Res 103, 1453-1461.

Adaskaveg, J. E., Gilbertsonr, R. L. & Blanchette, A. (1990). Comparative studies of delignification caused by Ganoderma species. Appl Environ Microb 56, 1932-1943.

Agosin, E., Blanchette, R. A., Silva, H., Lapierre, C., Cease, K. R., Ibach, R. E., Abad, A. R. & Muga, P. (1990). Characterization of Palo-Podrido, a natural process of delignification in wood. Appl Environ Microb 56, 65-74.

Asiegbu, F. O. (2000). Adhesion and development of the root rot fungus (Heterobasidion annosum) on conifer tissues: effects of spore and host surface constituents. Fems Microbiol Ecol 33, 101-110.

Asiegbu, F. O., Adomas, A. & Stenlid, J. (2005). Conifer root and butt rot caused by Heterobasidion annosum(Fr.) Bref.s.l. Mol Plant Pathol 6, 395-409.

Baborova, P., Moder, M., Baldrian, P., Cajthamlova, K. & Cajthaml, T. (2006). Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157, 248-253.

Baciocchi, E., Bietti, M., Gerini, M. F. & Lanzalunga, O. (2002). The mediation of veratryl alcohol in oxidations promoted by lignin peroxidase: the lifetime of veratryl alcohol radical cation. Biochem Bioph Res Co 293, 832-835.

Baciocchi, E., Fabbri, C. & Lanzalunga, O. (2003). Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: Fragmentation reactions in the intermediate radical cations. J Org Chem 68, 9061-9069.

Barrasa, J. M., Gutierrez, A., Escaso, V., Guillen, F., Martinez, M. J. & Martinez, A. T. (1998). Electron and fluorescence microscopy of extracellular glucan and aryl-alcohol oxidase during wheat-straw degradation by Pleurotus eryngii. Appl Environ Microb 64, 325-332.

Belinky, P. A., Flikshtein, N., Lechenko, S., Gepstein, S. & Dosoretz, C. G. (2003). Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microb 69, 6500-6506.

Blanchette, R. A. (1991). Delignification by wood-decay fungi. Annu Rev Phytopathol 29, 381-398.

Blee, K. A., Choi, J. W., O''Connell, A. P., Schuch, W., Lewis, N. G. & Bolwell, G. P. (2003). A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64, 163-176.

Boerjan, W., Ralph, J. & Baucher, M. (2003). Lignin biosynthesis. Annual review of plant biology 54, 519-546.

Camarero, S., Ruiz-Duenas, F. J., Sarkar, S., Martinez, M. J. & Martinez, A. T. (2000). The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. Fems Microbiol Lett 191, 37-43.

Chang, T. T. & Chou, W. N. (1995). Antrodia cinnamomea sp-nov on Cinnamomum kanehirai in Taiwan. Mycol Res 99, 756-758.

Chen, C. H., Yang, S. W. & Shen, Y. C. (1995). New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J Nat Prod 58, 1655-1661.

Cheng, J. J., Yang, C. J., Cheng, C. H., Wang, Y. T., Huang, N. K. & Lu, M. K. (2005). Characterization and functional study of Antrodia camphorata lipopolysaccharide. J Agr Food Chem 53, 469-474.

Cherng, I. H., Chiang, H. C., Cheng, M. C. & Wang, Y. (1995). Three new triterpenoids from Antrodia cinnamomea. J Nat Prod 58, 365-371.

Clausen, C. A., Green, F., Woodward, B. M., Evans, J. W. & DeGroot, R. C. (2000). Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos. Int Biodeter Biodegr 46, 69-76.

Clausen, C. A. & Green, F. (2003). Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. Int Biodeter Biodegr 51, 139-144.

Cullen, D. (1997). Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53, 273-289.

Daniel, G., Volc, J. & Kubatova, E. (1994). Pyranose Oxidase, a Major Source of H2o2 during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microb 60, 2524-2532.

Daniel, G. & Bergman, O. (1997). White rot and manganese deposition in TnBTO-AAC preservative treated pine stakes from field tests. Holz Roh Werkst 55, 197-201.

Daniel, G., Nilsson, T. & Volc, J. (1997). Electron microscopical observations and chemical analyses supporting Mn uptake in white rot degraded Alstonia and pine wood stakes exposed in acid coniferous soil. Can J Microbiol 43, 663-671.

Daniel, G., Asiegbu, F. & Johansson, M. (1998). The saprotrophic wood-degrading abilities of Heterobasidium annosum intersterility groups P and S. Mycol Res 102, 991-997.

Daniel, G., Volc, J. & Niku-Paavola, M. L. (2004). Cryo-FE-SEM & TEM immuno-techniques reveal new details for understanding white-rot decay of lignocellulose. Cr Biol 327, 861-871.

Dias, A. A., Bezerra, R. M. & Pereira, A. N. (2004). Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater. Bioresource Technol 92, 7-13.

Duchesne, I., Hult, E., Molin, U., Daniel, G., Iversen, T. & Lennholm, H. (2001). The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS C-13-NMR. Cellulose 8, 103-111.

Duchesne, I., Daniel, G., Van Leerdam, G. C. & Basta, J. (2003). Surface chemical composition and morphology of ITC kraft fibres as determined by XPS and FE-SEM. J Pulp Pap Sci 29, 71-76.

Dutton, M. V., Evans, C. S., Atkey, P. T. & Wood, D. A. (1993). Oxalate production by basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biot 39, 5-10.

Faison, B. D., Kirk, T. K. & Farrell, R. L. (1986). Role of veratryl alcohol in regulating ligninase activity in Phanerochaete chrysosporium. Appl Environ Microb 52, 251-254.

Gandon, C. & Bruneteau, M. (1998). Structural studies of the extracellular beta-D-glucans from Phytophthora parasitica Dastur. Carbohyd Res 313, 259-263.

Gelpke, M. D. S., Mayfield-Gambill, M., Cereghino, G. P. L. & Gold, M. H. (1999). Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microb 65, 1670-1674.

Gold, M. H. & Alic, M. (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57, 605-622.

Goodell, B., Nicholas, D. D. & Schultz, T. P. (2003). Wood deterioration and preservation : advances in our changing world. Washington, DC; New York, N.Y.: American Chemical Society ; Oxford University Press.

Green, F. & Clausen, C. A. (2003). Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeter Biodegr 51, 145-149.

Heinfling, A., Martinez, M. J., Martinez, A. T., Bergbauer, M. & Szewzyk, U. (1998a). Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microb 64, 2788-2793.

Heinfling, A., Ruiz-Duenas, F. J., Martinez, M. J., Bergbauer, M., Szewzyk, U. & Martinez, A. T. (1998b). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. Febs Lett 428, 141-146.

Hilden, K., Martinez, A. T., Hatakka, A. & Lundell, T. (2005). The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42, 403-419.

Hseu, Y. C., Chang, W. C., Hseu, Y. T., Lee, C. Y., Yech, Y. J., Chen, P. C., Chen, J. Y. & Yang, H. L. (2002). Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci 71, 469-482.

Hsiao, G., Shen, M. Y., Lin, K. H., Lan, M. H., Wu, L. Y., Chou, D. S., Lin, C. H., Su, C. H. & Sheu, J. R. (2003). Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agr Food Chem 51, 3302-3308.

Hsu, Y. L., Kuo, Y. C., Kuo, P. L., Ng, L. T., Kuo, Y. H. & Lin, C. C. (2005). Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 221, 77-89.

Jaouani, A., Tabka, M. G. & Penninckx, M. J. (2006). Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere 62, 1421-1430.

Jong, S. C. & Birmingham, J. M. (1992). Medicinal Benefits of the Mushroom Ganoderma. Adv Appl Microbiol 37, 101-134.

Karthikeyan, M., Bhaskaran, R., Radhika, K., Mathiyazhagan, S., Sandosskumar, R., Samiyappan, R. & Velazhahan, R. (2007a). Random amplified polymorphic DNA analysis of genetic variability among isolates of Ganoderma species. J Plant Dis Protect 114, 205-212.

Karthikeyan, M., Radhika, K., Bhaskaran, R., Mathiyazhagan, S., Samiyappan, R. & Velazhahan, R. (2007b). Pathogenicity confirmation of Ganoderma disease of coconut using early diagnosis technique. J Phytopathol 155, 296-304.

Krcmar, P., Novotny, C., Marais, M. F. & Joseleau, J. P. (1999). Structure of extracellular polysaccharide produced by lignin-degrading fungus Phlebia radiata in liquid culture. Int J Biol Macromol 24, 61-64.

Lee, I. H., Huang, R. L., Chen, C. T., Chen, H. C., Hsu, W. C. & Lu, M. K. (2002). Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. Fems Microbiol Lett 209, 63-67.

Li, D., Alic, M., Brown, J. A. & Gold, M. H. (1995). Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microb 61, 341-345.

Li, X. L., Zhou, A. G. & Li, X. M. (2007). Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced by gamma-irradiation in rat liver mitochondria. Carbohyd Polym 69, 172-178.

Luna, M. L., Murace, M. A., Keil, G. D. & Otano, M. E. (2004). Patterns of decay caused by Pycnoporus sanguineus and Ganoderma lucidum (Aphyllophorales) in poplar wood. Iawa J 25, 425-433.

Martinez, A. T. (2002). Molecular biology and structure-function of lignin- degrading heme peroxidases. Enzyme Microb Tech 30, 425-444.

Mau, J. L., Huang, P. N., Huang, S. J. & Chen, C. C. (2004). Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chem 86, 25-31.

Mayer, A. M. & Staples, R. C. (2002). Laccase: new functions for an old enzyme. Phytochemistry 60, 551-565.

Murugesan, K., Nam, I. H., Kim, Y. M. & Chang, Y. S. (2007). Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Tech 40, 1662-1672.

Nie, G. J., Reading, N. S. & Aust, S. D. (1998). Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli. Biochem Bioph Res Co 249, 146-150.

Okano, K., Kitagawa, M., Sasaki, Y. & Watanabe, T. (2005). Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim Feed Sci Tech 120, 235-243.

Pan, X. J., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z. Z., Zhang, X. & Saddler, J. (2005). Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90, 473-481.

Perez-Boada, M., Ruiz-Duenas, F. J., Pogni, R., Basosi, R., Choinowski, T., Martinez, M. J., Piontek, K. & Martinez, A. T. (2005). Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354, 385-402.

Piontek, K., Smith, A. T. & Blodig, W. (2001). Lignin peroxidase structure and function. Biochem Soc T 29, 111-116.

Rajakumar, S., Gaskell, J., Cullen, D., Lobos, S., Karahanian, E. & Vicuna, R. (1996). Lip-like genes in Phanerochaete sordida, and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microb 62, 2660-2663.

Reid, I. D. (1995). Biodegradation of Lignin. Can J Bot 73, S1011-S1018.

Ruel, K. & Joseleau, J. P. (1991). Involvement of an extracellular glucan sheath during degradation of populus wood by Phanerochaete chrysosporium. Appl Environ Microb 57, 374-384.

Ruiz-Duenas, F. J., Martinez, M. J. & Martinez, A. T. (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31, 223-235.

Ruiz-Duenas, F. J., Camarero, S., Perez-Boada, M., Martinez, M. J. & Martinez, A. T. (2001). A new versatile peroxidase from Pleurotus. Biochem Soc T 29, 116-122.

Songulashvili, G., Elisashvili, V., Wasser, S. P., Nevo, E. & Hadar, Y. (2007). Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb Tech 41, 57-61.

Stewart, P., Kersten, P., Vanden Wymelenberg, A., Gaskell, J. & Cullen, D. (1992). Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol 174, 5036-5042.

Takano, M., Nakamura, M., Nishida, A. & Ishihara, M. (2004). Manganese peroxidase from Phanerochaete crassa WD1694. Bulletin of FFPRI 3, 7-13.

Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K. & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Bioeng 100, 637-643.

Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology 140, 19-26.

Tien, M. & Kirk, T. K. (1983). Lignin-degrading enzyme from the hymenomycete phanerochaete chrysosporium burds. Science 221, 661-662.

Tien, M. & Kirk, T. K. (1984). Lignin-degrading enzyme from Phanerochaete chrysosporium - purification, characterization, and catalytic properties of a unique H2o2-requiring oxygenase. P Natl Acad Sci-Biol 81, 2280-2284.

Tien, M. & Kirk, T. K. (1988). Lignin peroxidase of Phanerochaete chrysosporium. Method Enzymol 161, 238-249.

Vesentini, D., Dickinson, D. J. & Murphy, R. J. (2005). The production of extracellular mucilaginous material (ECMM) in two wood-rotting basidiomycetes is affected by growth conditions. Mycologia 97, 1163-1170.

Vesentini, D., Dickinson, D. J. & Murphy, R. J. (2006). Fungicides affect the production of extracellular mucilaginous material (ECMM) and the peripheral growth unit (PGU) in two wood-rotting basidiomycetes. Mycol Res 110, 1207-1213.

Vesentini, D., Dickinson, D. J. & Murphy, R. J. (2007). The protective role of the extracellular mucilaginous material (ECMM) from two wood-rotting basidiomycetes against copper toxicity. Int Biodeter Biodegr 60, 1-7.

Walther, I., Kalin, M., Reiser, J. & other authors (1988). Molecular analysis of a Phanerochaete chrysosporium lignin peroxidase gene. Gene 70, 127-137.

Wang, G., Zhao, J., Liu, J. W., Huang, Y. P., Zhong, J. J. & Tang, W. (2007a). Enhancement of IL-2 and IFN-gamma expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int Immunopharmacol 7, 864-870.

Wang, X. M., Guan, S. H., Liu, R. X., Sun, J. H., Liang, Y., Yang, M., Wang, W., Bi, K. S. & Guo, D. A. (2007b). HPLC determination of four triterpenoids in rat urine after oral administration of total triterpenoids from Ganoderma lucidum. J Pharmaceut Biomed 43, 1185-1190.

Wang, X. M., Liu, R. X., Sun, J. H., Guan, S. H., Yang, M., Bi, K. S. & Guo, D. (2007c). HPLC method for the determination and pharmacokinetic studies of four triterpenoids in rat plasma after oral administration of Ganoderma lucidum extract. Biomed Chromatogr 21, 389-396.

Wang, Y., Vazquez-Duhalt, R. & Pickard, M. A. (2003). Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 49, 675-682.

Ward, G., Hadar, Y. & Dosoretz, C. G. (2003). Lignin peroxidase-catalyzed polymerization and detoxification of toxic halogenated phenols. J Chem Technol Biot 78, 1239-1245.

Whitwam, R. E., Brown, K. R., Musick, M., Natan, M. J. & Tien, M. (1997). Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry 36, 9766-9773.

Yang, S. W., Shen, Y. C. & Chen, C. H. (1996). Steroids and triterpenoids of Antrodia cinnamomea - A fungus parasitic on Cinnamomum micranthum. Phytochemistry 41, 1389-1392.

Zhao, J., Zhang, X. Q., Li, S. P., Yang, F. Q., Wang, Y. T. & Ye, W. C. (2006). Quality evaluation of Ganoderma through simultaneous determination of nine triterpenes and sterols using pressurized liquid extraction and high performance liquid chromatography. J Sep Sci 29, 2609-2615.

Zhu, X. L., Chen, A. F. & Lin, Z. B. (2007). Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J Ethnopharmacol 111, 219-226.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔