跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林珊瑚
研究生(外文):Shan-Hu Lin
論文名稱:Zebularine引發細胞週期停滯及凋亡之研究
論文名稱(外文):Investigation of Zebularine-induced Cell Cycle Arrest and Apoptosis
指導教授:陳青周
指導教授(外文):Ching-Chow Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:DNMT抑制劑p53蛋白p21蛋白
外文關鍵詞:zebularinep53H2AXAMPK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
DNA甲基化是許多癌症的指標,DNA methyltransferases(DNMT)抑制劑可抑制DNMT重新表現抑癌基因。Zebularine除了抑制DNA甲基化外,有研究顯示其可增加癌細胞對輻射之敏感度。本實驗中發現Zebularine可透過ATR之訊息傳遞磷酸化H2AX,推測其可引發DNA damage,同時也可見p53、p21蛋白表現與細胞週期停滯於G1。Zebularine可活化調控細胞能量平衡之酵素AMPK。AMPK抑制劑compound C或AMPKα si-RNA 抑制AMPK之活化除了觀察到H2AX之磷酸化、p53與p21之表現增加外,還可促進細胞凋亡與抑制癌細胞生長;反之,活化AMPK可抑制p53蛋白之表現。本實驗結果顯示Zebularine可分別引起DNA damage和活化AMPK。AMPK之活化在Zebularine引起細胞毒殺作用扮演保護性之角色,因此合併Zebularine與AMPK抑制劑,能在癌症治療上提供更好的治療方式。
Aberrant DNA hypermethylation is a frequent finding in tumor cells. DNA methyltransferases(DNMTs)inhibitors may reactivate tumor suppressor genes and makes it an effective anticancer strategy. In addition to its demethylating function, DNMT inhibitor, zebularine was also reported to enhance tumor cell radiosensibility. In this study, we found that zebularine induces H2AX phosphorylation through ATR signaling, suggesting the induction of DNA damage by zebularine. Phoshphorylation of p53 at Ser15、overexpression of p53 and p21 proteins and cell cycle G1 arrest were also seen. We assessed the role of an intracellular energy balancing enzyme, AMPK in DNA damage as well. Zebularine activated AMPK, and the inhibition of AMPK by the inhibitor compound C or AMPKα si-RNA resulted in an increase of H2AX phosphorylation and p53 expression. Expression of the constitutive active form of AMPK down-regulated zebularine-induced p53 expression. Our data demostrated that zebularine separately caused DNA damage and activated AMPK. Activation of AMPK may protect the cytotoxic effect of zebularine. Therefore, the combination of zebularine and AMPK inhibitors could be a novel chemotherapeutic strategy.
目錄
( Contents )
縮寫表……………………………………………………………… 1
(Abbreviation)
中文摘要…………………………………………………………… 4
(Abstract in Chinese)
英文摘要…………………………………………………………… 5
(Abstract in English)
緒論………………………………………………………………… 6
(Introduction)
研究動機……………………………………………………………27
(Motivation)
實驗材料與方法……………………………………………………28
(Materials and Methods)
結果…………………………………………………………………35
(Results)
討論…………………………………………………………………61
(Discussion)
結論…………………………………………………………………65
( Conclusion)
參考文獻……………………………………………………………67
(References)
Abraham, R. T. (2001). "Cell cycle checkpoint signaling through the ATM and ATR kinases." Genes Dev 15(17): 2177-96.
Appella, E. and C. W. Anderson (2001). "Post-translational modifications and activation of p53 by genotoxic stresses." Eur J Biochem 268(10): 2764-72.
Asada, M., T. Yamada, et al. (1999). "Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation." Embo J 18(5): 1223-34.
Aylon, Y. and M. Oren (2007). "Living with p53, dying of p53." Cell 130(4): 597-600.
Banin, S., L. Moyal, et al. (1998). "Enhanced phosphorylation of p53 by ATM in response to DNA damage." Science 281(5383): 1674-7.
Bode, A. M. and Z. Dong (2004). "Post-translational modification of p53 in tumorigenesis." Nat Rev Cancer 4(10): 793-805.
Bosotti, R., A. Isacchi, et al. (2000). "FAT: a novel domain in PIK-related kinases." Trends Biochem Sci 25(5): 225-7.
Boxem, M. (2006). "Cyclin-dependent kinases in C. elegans." Cell Div 1: 6.
Brandes, J. C. and J. G. Herman (2006). "p53 expression after treatment with zebularine is not due to demethylation." Cancer Res 66(13): 6892; author reply 6893.
Brooks, C. L. and W. Gu (2006). "p53 ubiquitination: Mdm2 and beyond." Mol Cell 21(3): 307-15.
Brugarolas, J., C. Chandrasekaran, et al. (1995). "Radiation-induced cell cycle arrest compromised by p21 deficiency." Nature 377(6549): 552-7.
Bunz, F., A. Dutriaux, et al. (1998). "Requirement for p53 and p21 to sustain G2 arrest after DNA damage." Science 282(5393): 1497-501.
Burma, S., B. P. Chen, et al. (2001). "ATM phosphorylates histone H2AX in response to DNA double-strand breaks." J Biol Chem 276(45): 42462-7.
Carling, D. (2004). "The AMP-activated protein kinase cascade--a unifying system for energy control." Trends Biochem Sci 29(1): 18-24.
Celeste, A., O. Fernandez-Capetillo, et al. (2003). "Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks." Nat Cell Biol 5(7): 675-9.
Chehab, N. H., A. Malikzay, et al. (2000). "Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53." Genes Dev 14(3): 278-88.
Cheng, J. C., C. B. Matsen, et al. (2003). "Inhibition of DNA methylation and reactivation of silenced genes by zebularine." J Natl Cancer Inst 95(5): 399-409.
Cheng, J. C., D. J. Weisenberger, et al. (2004). "Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells." Mol Cell Biol 24(3): 1270-8.
Cheng, J. C., C. B. Yoo, et al. (2004). "Preferential response of cancer cells to zebularine." Cancer Cell 6(2): 151-8.
Cortez, D., S. Guntuku, et al. (2001). "ATR and ATRIP: partners in checkpoint signaling." Science 294(5547): 1713-6.
Crute, B. E., K. Seefeld, et al. (1998). "Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase." J Biol Chem 273(52): 35347-54.
Dumaz, N., D. M. Milne, et al. (1999). "Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15." FEBS Lett 463(3): 312-6.
Emmy P. Rogakou, D. R. P. (1998). "DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139." Biochem Cell Biol 273: 5858.
Fan, S., J. K. Chang, et al. (1997). "Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard." Oncogene 14(18): 2127-36.
Fang, M. Z., Y. Wang, et al. (2003). "Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines." Cancer Res 63(22): 7563-70.
Fatemi, M., A. Hermann, et al. (2002). "Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA." Eur J Biochem 269(20): 4981-4.
Feng, L., T. Lin, et al. (2005). "Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity." Mol Cell Biol 25(13): 5389-95.
Foster, E. R. and J. A. Downs (2005). "Histone H2A phosphorylation in DNA double-strand break repair." Febs J 272(13): 3231-40.
Fournel, M., P. Sapieha, et al. (1999). "Down-regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16(ink4A) and p21(WAF/Cip1) by distinct mechanisms." J Biol Chem 274(34): 24250-6.
Fryer, L. G., F. Foufelle, et al. (2002). "Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells." Biochem J 363(Pt 1): 167-74.
Fu, X., S. Wan, et al. (2008). "Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation." PLoS ONE 3(4): e2009.
Galm, O., J. G. Herman, et al. (2006). "The fundamental role of epigenetics in hematopoietic malignancies." Blood Rev 20(1): 1-13.
Gartel, A. L. and A. L. Tyner (2002). "The role of the cyclin-dependent kinase inhibitor p21 in apoptosis." Mol Cancer Ther 1(8): 639-49.
Gostissa, M., A. Hengstermann, et al. (1999). "Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1." Embo J 18(22): 6462-71.
Hardie, D. G., S. A. Hawley, et al. (2006). "AMP-activated protein kinase--development of the energy sensor concept." J Physiol 574(Pt 1): 7-15.
Harris, S. L. and A. J. Levine (2005). "The p53 pathway: positive and negative feedback loops." Oncogene 24(17): 2899-908.
Hawley, S. A., A. E. Gadalla, et al. (2002). "The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism." Diabetes 51(8): 2420-5.
Hawley, S. A., M. A. Selbert, et al. (1995). "5''-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms." J Biol Chem 270(45): 27186-91.
Hay, R. T. (2005). "SUMO: a history of modification." Mol Cell 18(1): 1-12.
He, J., F. Zhou, et al. (2007). "Overexpression of Pin1 in non-small cell lung cancer (NSCLC) and its correlation with lymph node metastases." Lung Cancer 56(1): 51-8.
Horman, S., G. Browne, et al. (2002). "Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis." Curr Biol 12(16): 1419-23.
Imamura, K., T. Ogura, et al. (2001). "Cell cycle regulation via p53 phosphorylation by a 5''-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line." Biochem Biophys Res Commun 287(2): 562-7.
Ito, A., Y. Kawaguchi, et al. (2002). "MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation." Embo J 21(22): 6236-45.
Jiemjit, A., T. E. Fandy, et al. (2008). "p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage." Oncogene 27(25): 3615-23.
Jones, R. G., D. R. Plas, et al. (2005). "AMP-activated protein kinase induces a p53-dependent metabolic checkpoint." Mol Cell 18(3): 283-93.
Kang, K. H., W. H. Kim, et al. (1999). "p21 promotes ceramide-induced apoptosis and antagonizes the antideath effect of Bcl-2 in human hepatocarcinoma cells." Exp Cell Res 253(2): 403-12.
Kemp, B. E., K. I. Mitchelhill, et al. (1999). "Dealing with energy demand: the AMP-activated protein kinase." Trends Biochem Sci 24(1): 22-5.
Kim, H. S., J. T. Hwang, et al. (2008). "Inhibition of AMP-activated protein kinase sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction of p53." J Biol Chem 283(7): 3731-42.
Kitano, S., S. Venable, et al. (1996). "Effect of aging on regulation of sdi-1 in rat hepatocytes." Biochem Biophys Res Commun 225(1): 122-7.
Lakin, N. D., B. C. Hann, et al. (1999). "The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53." Oncogene 18(27): 3989-95.
Lavin, M. F. and N. Gueven (2006). "The complexity of p53 stabilization and activation." Cell Death Differ 13(6): 941-50.
Li, T., R. Santockyte, et al. (2006). "Expression of SUMO-2/3 induced senescence through p53- and pRB-mediated pathways." J Biol Chem 281(47): 36221-7.
Li, Y., C. W. Jenkins, et al. (1994). "Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21." Oncogene 9(8): 2261-8.
Linzer, D. I., W. Maltzman, et al. (1979). "The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen." Virology 98(2): 308-18.
Liu, K., Y. F. Wang, et al. (2003). "Endogenous assays of DNA methyltransferases: Evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo." Mol Cell Biol 23(8): 2709-19.
Maya, R., M. Balass, et al. (2001). "ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage." Genes Dev 15(9): 1067-77.
Megyesi, J., N. Udvarhelyi, et al. (1996). "The p53-independent activation of transcription of p21 WAF1/CIP1/SDI1 after acute renal failure." Am J Physiol 271(6 Pt 2): F1211-6.
Milutinovic, S., J. D. Knox, et al. (2000). "DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAF1/CIP1/sdi1)." J Biol Chem 275(9): 6353-9.
Modesti, M. and R. Kanaar (2001). "DNA repair: spot(light)s on chromatin." Curr Biol 11(6): R229-32.
Moore, J. D. and J. E. Krebs (2004). "Histone modifications and DNA double-strand break repair." Biochem Cell Biol 82(4): 446-52.
Motoshima, H., B. J. Goldstein, et al. (2006). "AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer." J Physiol 574(Pt 1): 63-71.
Muller, S., M. Berger, et al. (2000). "c-Jun and p53 activity is modulated by SUMO-1 modification." J Biol Chem 275(18): 13321-9.
O''Driscoll, M. and P. A. Jeggo (2006). "The role of double-strand break repair - insights from human genetics." Nat Rev Genet 7(1): 45-54.
Okano, M., D. W. Bell, et al. (1999). "DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development." Cell 99(3): 247-57.
Okoshi, R., T. Ozaki, et al. (2008). "Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress." J Biol Chem 283(7): 3979-87.
Olivier, M., S. P. Hussain, et al. (2004). "TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer." IARC Sci Publ(157): 247-70.
Pan, Z. Q., A. Kentsis, et al. (2004). "Nedd8 on cullin: building an expressway to protein destruction." Oncogene 23(11): 1985-97.
Pickart, C. M. (2001). "Ubiquitin enters the new millennium." Mol Cell 8(3): 499-504.
Prives, C. and P. A. Hall (1999). "The p53 pathway." J Pathol 187(1): 112-26.
Qin, L. F. and I. O. Ng (2001). "Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells." Cancer Lett 172(1): 7-15.
Rattan, R., S. Giri, et al. (2005). "5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase." J Biol Chem 280(47): 39582-93.
Redon, C., D. Pilch, et al. (2002). "Histone H2A variants H2AX and H2AZ." Curr Opin Genet Dev 12(2): 162-9.
Rodriguez, M. S., J. M. Desterro, et al. (1999). "SUMO-1 modification activates the transcriptional response of p53." Embo J 18(22): 6455-61.
Saitoh, H. and J. Hinchey (2000). "Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3." J Biol Chem 275(9): 6252-8.
Sarkaria, J. N., E. C. Busby, et al. (1999). "Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine." Cancer Res 59(17): 4375-82.
Sarkaria, J. N., R. S. Tibbetts, et al. (1998). "Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin." Cancer Res 58(19): 4375-82.
Stein, S. C., A. Woods, et al. (2000). "The regulation of AMP-activated protein kinase by phosphorylation." Biochem J 345 Pt 3: 437-43.
Stucki, M., J. A. Clapperton, et al. (2005). "MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks." Cell 123(7): 1213-26.
Suzuki, A., Y. Tsutomi, et al. (1998). "Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP." Oncogene 17(8): 931-9.
Sykes, S. M., H. S. Mellert, et al. (2006). "Acetylation of the p53 DNA-binding domain regulates apoptosis induction." Mol Cell 24(6): 841-51.
Tanizawa, A., M. Kubota, et al. (1989). "VP-16-induced nucleotide pool changes and poly(ADP-ribose) synthesis: the role of VP-16 in interphase death." Exp Cell Res 185(1): 237-46.
Toledo, F. and G. M. Wahl (2006). "Regulating the p53 pathway: in vitro hypotheses, in vivo veritas." Nat Rev Cancer 6(12): 909-23.
Waga, S., G. J. Hannon, et al. (1994). "The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA." Nature 369(6481): 574-8.
Waldman, T., K. W. Kinzler, et al. (1995). "p21 is necessary for the p53-mediated G1 arrest in human cancer cells." Cancer Res 55(22): 5187-90.
Ward, I. M. and J. Chen (2001). "Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress." J Biol Chem 276(51): 47759-62.
Warden, S. M., C. Richardson, et al. (2001). "Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization." Biochem J 354(Pt 2): 275-83.
Waterman, M. J., E. S. Stavridi, et al. (1998). "ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins." Nat Genet 19(2): 175-8.
Watson, I. R. and M. S. Irwin (2006). "Ubiquitin and ubiquitin-like modifications of the p53 family." Neoplasia 8(8): 655-66.
West, A. G. and H. van Attikum (2006). "Chromatin at the crossroads. Meeting on signalling to chromatin epigenetics." EMBO Rep 7(12): 1206-10.
Xirodimas, D. P., M. K. Saville, et al. (2004). "Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity." Cell 118(1): 83-97.
Yeh, E. T., L. Gong, et al. (2000). "Ubiquitin-like proteins: new wines in new bottles." Gene 248(1-2): 1-14.
Ying, J., G. Srivastava, et al. (2004). "Promoter hypermethylation of the cyclin-dependent kinase inhibitor (CDKI) gene p21WAF1/CIP1/SDI1 is rare in various lymphomas and carcinomas." Blood 103(2): 743-6.
Yoo, C. B., J. C. Cheng, et al. (2004). "Zebularine: a new drug for epigenetic therapy." Biochem Soc Trans 32(Pt 6): 910-2.
Zhao, Y., S. Lu, et al. (2006). "Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1)." Mol Cell Biol 26(7): 2782-90.
Zou, M. H., X. Y. Hou, et al. (2002). "Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase." J Biol Chem 277(36): 32552-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top