Arima, K., A. Kakinuma, G. Tamura. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968;31:488–494.
Asselineau, C., J. Asselineau. Trehalose containing glycolipids. Prog. Chem. Fats Lipids.1978;16:59–99.
Banat, I. M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technol. 1995;51:1–12.
Banat, I. M. Characterization of biosurfactants and their use in pollution removal—state of the art. Acta Biotechnol. 1995;15:251–267.
Belsky, I., D. L. Gutnick, E. Rosenberg. Emulsifier of Arthrobacter RAG-1: determination of emulsifier bound fatty acids. FEBS Lett.1979;101:175–178.
Benincasa M, Contiero J, Manresa MA, Moraes IO. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng. 2002;54:283-288.
Cooper, D. G., B. G. Goldenberg. Surface active agents from two Bacillus species. Appl. Environ. Microbiol. 1987; 53:224–229.
Cooper, D. G., J. E. Zajic. Surface active compounds from
microorganisms. Adv. Appl. Microbiol. 1980;26:229–253.
Cutler, A. J., R. J. Light. Regulation of hydroxydocosanoic and sophoroside production in Candida bogoriensis by the level of glucose and yeast extract in the growth medium. J. Biol. Chem. 1979.;254:1944–1950.
Desai, A. J., R. M. Patel, J. D. Desai. Advances in production of biosurfactants and their commercial applications. J. Sci. Ind. Res. 1994;53:619– 629.
Horowitz, S., W. M. Griffin. Structural analysis of Bacillus licheniformis 86 surfactant. J. Ind. Microbiol. 1991;7:45–52.
Itoh, S., S. Inoue. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl. Environ. Microbiol. 1982;43:1278–1283.
Jarvis, F. G., M. J. Johnson. A glycolipid produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 1949; 71:4124–4126.
Kappeli, O., M. Muller, A. Fiechter. Chemical and structuralalterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate. J. Bacteriol. 1978;133:952–958.
Kappeli, O., P. Walther, M. Mueller, A. Fiechter. Structure of cell surface of the yeast Candida tropicalis and its relation to hydrocarbon tranport. Arch. Microbiol. 1984;138:279–282.
Kitamoto, D., T. Fuzishiro, H. Yanagishita, T. Nakane, T. Nakahara. Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol. Lett. 1992;14:305–310.
Kretschmer, A., H. Bock, F. Wagner. Chemical and physical
Characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl. Environ. Microbiol. 1982; 44:864–870.
Lang S, Wullbrandt D. Rhamnose lipids - Biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol.1990;51(1):22-32.
Lang, S., E. Katsiwela, F. Wagner. Antimicrobial effects of
biosurfactants. Fat Sci. Technol. 1989;91:363–366.
Liggett R. W, K. H. Corn steep liquor in microbiology. American Society for Microbiology.1948;12.
Macrac, A. R., R. C. Hammond. Present and future applications of lipases. Biotechnol. Gen. Eng. Rev. 1985;3:193–200.
Matsuyama, T., M. Sogawa, I. Yano. Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl. Environ. Microbiol. 1991;53: 1186–1188.
Mulligan CN, Wang S. Remediation of a heavy metal-contaminated soil by a Rhamnolipid foam. Eng Geol. 2006;85(1-2): 75-81.
Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133(2): 183-198.
Mulligan, C. N., G. Mahmourides, B. F. Gibbs. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J. Biotechnol. 1989;12:199–210.
Ochsner, U. A., A. K. Koch, A. Fiechter, J. Reiser. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 1994;176:2044–2054
Ochsner, U. A., A. Fiechter, J. Reiser. Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 1994;269:19787–19795.
Ochsner, U. A., J. Reiser. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1995;92:6424–6428.
Ochsner, U. A., J. Reiser, A. Fiechter, and B. Witholt. 1995. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterogeneous host. Appl. Environ. Microbiol. 61:3503–3506.
Reiling, H. E., U. T. Wyass, L. H. Guerra-Santos, R. Hirt, O. Kappeli, A. Fiechter. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl. Environ. Microbiol.1986;51:985–989.
Rosenberg, E., C. Rubinovitz, R. Legmann, E. Z. Ron. Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl. Environ. Microbiol. 1988;54:323–326.
Shulga, A. N., E. V. Karpenko, S. A. Eliseev, A. A. Turovsky.. The method for determination of anionogenic bacterial surface-active peptidolipids. Microbiol. J. 1993;55:85–88.
Soberón-Chávez G., Lépine F, Déziel E. Production of Rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2005;68(6):
Takahashui J., K. K., Y. I.,K. Y. Effects of Corn Steep Liquor and Thiamine on L-Glutamic Acid Fermentation of Hydrocarbons.1965;13
Stipcevic T, Piljac A, Piljac G. Enhanced healing of full-thickness burn wounds using di-Rhamnolipid. Burns. 2006;32(1):24-34.
Stipcevic T, Piljac T, Isseroff RR. Di-Rhamnolipid from Pseudomonas aeruginosa displays differential effects on human keratinocyte and fibroblast cultures. J Dermatol Sci. 2005;40(2):141-143.
Van Dyke, M. I., P. Couture, M. Brauer, H. Lee, J. T. Trevors. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can. J. Microbiol. 1993;39:1071–1078.
Wang, S. D., D. I. C. Wang. Mechanisms for biopolymer accumulation in immobilized Acinetobacter calcoaceticus system. Biotechnol. Bioeng. 1990;36:402–410.
Wei Y.H.and Chu, I.M. Enhancememt of surfacetin production in ironenriched media by Bacillus subtilis ACCC21332. Enyme Microb. Technol. 1998;35:724-728
Wei Y.H.and Chu, I.M. Mn2+ improves production of surfacetin by Bacillus subtilis ACCC21332.Biotechnol. Lett. 2002;24:479-482
Wei YH, Chou CL, Chang JS. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J. 2005;27:146-154.
Wei YH, Lai CC, Chang JS. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem. 2007;42:40-45.
Zhang Y, Miller RM. Enhanced Octadecane Dispersion and Biodegradation by a Pseudomonas Rhamnolipid Surfactant (Biosurfactant). Appl Environ Microbiol. 1992;58: 3276-3282.
Zhang Y , Maier WJ , Miller RM. Effect of Rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol. 1997;31(8):2211-2217.
蒙哥馬利(Montgomery, Douglas C.) : 實驗設計與分析(2003)。
梁生康,「生物界面活性劑強化疏水性有機污染物生物降解研究發展」,化工環保,中國大陸(2005)。
賴卿霽,「Bacillus subtilis CWS1生產生物界面活性劑-表面素發酵培養基質之開發」,元智大學碩士論文,台灣(2005)。謝濤,「玉米漿在產甘油假絲酵母甘油發酵中的作用機理」,微生物學通報,中國大陸(2006)。
隨逸珺,「ICP-MS測定玉米漿乾粉中的AS、Cd、Cr、Cu、Pb、Se和Zn」,光譜實驗室,中國大陸(2006)。
鄭捷倫,「利用本土菌珠Pseudomonas aeruginosa J16發酵生產鼠李醣脂之探討」,元智大學碩士論文,台灣(2007)。