|
Bell, D. and Wang, H. (2000). "A Formalism for Relevance and its Application in Feature Subset Selection."Machine Learning, 4:2, 175-195.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont.
Breiman, L. (2001). "Random Forests." Machine Learning, 45, 5-32.
Breiman, L. (2002). "Manual on Setting Up, Using, and Understanding Random Forests v3.1." Technical Report, ftp://ftp.stat.berkeley.edu/pub/users/breiman/ Using random forests v3.1.pdf
Friedman, J. H. (2001). "Greedy Function Approximation: A Gradient Boosting Machine." The Annals of Statistics, 29, 1189-1232.
Hothorn, T., Hornik, K., and Zeileis, A. (2006). "Unbiased Recursive Partitioning: A Conditional Inference Framework." Journal of Computational and Graphical Statistics, 15, 651-674.
Hothorn, T., Hornik, K., and Zeileis, A. (2006). "party: A Laboratory for Recursive Part(y)itioning." R package version 0.9-11. Available online at http://cran.r-project.org/doc/vignettes/ party/ party.pdf
Loh, W.-Y. (2002). "Regression Trees with Unbiased Variable Selection and Interactiondetection." statistica sinica, 12, 361-386.
Loh, W.-Y. (2008). "Regression by Parts: Fitting Visually Interpretable Models with GUIDE." Handbook of Data Visualization, 447-468.
Loh, W.-Y. (2008). "Classification and Regression Tree Methods." Encyclopedia of Statistics in Quality and Reliability, 315-323.
Ridgeway, G. (2007). "Generalized Boosted Models: A Guide to the gbm Package." Available online at http://i-pensieri.com/gregr/papers/gbm-vignette.pdf
Sandri, M. and Zuccolotto, P. (2008). "A Bias Correction Algorithm for the Gini Variable Importance Measure in Classification Trees." Journal of Computational and Graphical Statistics, 17:3, 611-628.
Strasser H. and Weber C. (1999). "On the Asymptotic Theory of Permutation Statistics." Mathematical Methods of Statistics, 8, 220-250.
|