跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊麗鈴
研究生(外文):Li-ling Chuang
論文名稱:相關的卡方隨機變數加權和的近似分配
論文名稱(外文):Approximate Distributions of Weighted Sum of Correlated Chi-square Random Variables
指導教授:史玉山史玉山引用關係
指導教授(外文):Yu-shan Shih
學位類別:博士
校院名稱:國立中正大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:52
中文關鍵詞:相關的卡方隨機變數的加權和卡方近似法常態近似法
外文關鍵詞:normal approximationchi-squared approximationweighted sum of correlated chi-squared random va
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
已經有許多作者討論過相互獨立卡方隨機變數之加權和的近似分配,這些結果可以被用來結合許多獨立的顯著檢定。不過有一些情況,這些個別的檢定是有相關的。因此,結合後的檢定統計量就不再是獨立的卡方隨機變數的加權和。本篇文章將研究有相關或不相關的卡方隨機變數做加權和之後的近似分配。在此我們提出兩種近似分配,其一是卡方近似分配,另一個是常態近似分配,並且計算兩種近似法的誤差,及利用模擬比較兩者的優劣。
Many authors have discussed the approximate distribution of a weighted sum
of mutually independent chi-squared random variables. The results of previous
studies can be used to combining independent tests of significance. In some situations,
the individual tests are correlated. Thus the test statistic is no longer
a weighted sum of independent chi-squared variables. This paper studies the
approximate distribution of a weighted sum of correlated or uncorrelated chisquared
variables. This approximate distribution can be obtained by two types
of approximations, namely the chi-squared approximation and the normal approximation.
This study calculates the error bounds of both approximations, and
compares using simulations.
1. Introduction
2. Main Results
3. Simulation
4. Conclusion
1. Bock, M. E. and Solomon, H. (1988), “Distributions of quadratic forms”, Australian
Journal of Statistics, 30A, 139–149.
2. Brown, M. B. (1975), “A method for combining non-independent, one-sided tests of
significance”, Biometrics, 31, 987–992.
3. Buckley, M. J and Eagleson, G. K. (1988), “An approximation to the distribution of
quadratic forms in nnormal random variables”, Australian Journal of Statistics,
30A, 150–159.
4. Chaganty, N. R. and Joe, H. (2006), “Range of correlation matrices for dependent
bernoulli random variables”, Biometrika, 93, 197–206.
5. Chung, K. L. (2001), A course in probability theory, Academic Press.
6. Cox, L. H. and Piegorsch, W. W. (1996), “Combining environmental information.
i: environmental monitoring, measurement and assessment”, Environmetrics, 7,
299–308.
7. Fisher, R. A. (1932), Statistical methods for reseach workers, fourth ed., Oliver and
Boyd, London.
8. Hou, C. D. (2005), “A simple approximation for the distribution of the weighted combination
of nonindependent or independent probabilites”, Statistics and Probability
Letters, 73, 179–187.
9. Kotz, S., Johonson, N. L., and Boyd, D.W. (1967), “Series representations of quadratic
forms in normal variables. ii. non-central case”, Annals of Mathematical Statistics,
38, 838–848.
10.Makambi, K. H. (2003), “Weighted inverse chi-square method for correlated significance
tests”, Journal of Applied Statistics, 30, 225–234.
11. Muirhead, R. J. (1982), Aspects of multivariate statistical theory, New York: Wiley.
12. Raftery, A. E. (1984), “A continuous multivariate exponential distribution”, Communications
in Statistics, 13, 947–956.
13. Satterthwaite, F. E. (1941), “Synthesis of variance.”, Psychometrika, 6, 309–316.
14. Simonoff, J. S. (2003), Analyzing Categorical Data, Springer.
15. Solomon, H. and Stephens, M. A. (1977), “Distribution of a weighted sum of chisquared
variables”, Journal of the American Statistical Association, 72, 881–885.

16. Zhang, J. T. (2005), “Approximate and asymptotic distributions of chi-squared-type
mixtures with applications”, Journal of the American Statisical Association,
100(469), 273–285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top