(54.84.236.168) 您好!臺灣時間:2018/12/16 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:溫美娟
研究生(外文):Mei-Chuan Wen
論文名稱:合歡山地區台灣高山杜鵑之族群遺傳與玉山杜鵑相生相剋作用
論文名稱(外文):Population Genetics of Rhododendron rubropilosum Hayata var. taiwanalpinum and Allelopathy of Rhododendron pseudochrysanthum Hayata at Mt. Hohuan.
指導教授:周昌弘講座
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生態暨演化生物學研究所
學門:生命科學學門
學類:生態學類
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:台灣高山杜鵑玉山杜鵑微衛星族群遺傳酚酸相生相剋
外文關鍵詞:Rhododendron rubropilosum Hayata var. taiwanalpinumRhododendron pseudochrysanthum Hayatamicrosatellitepopulation geneticphenolicsallelopathy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:360
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣高山杜鵑為台灣高山原生杜鵑之一,根據文獻檢索發現目前針對台灣高山杜鵑族群遺傳結構分析之研究甚少,也缺乏探討其與氣候變遷之相關性。因此本研究欲利用微衛星(microsatellite)DNA基因座之高變異性的特性探討台灣高山杜鵑在合歡山三個樣區的族群遺傳結構是否受到氣候變遷的影響。在本研究發現因為異型合子的減少導致基因多型性的減少,結果顯示分離出之8組基因座皆偏離哈溫定律,分化指數平均值為0.0532,屬於低等分化。從遺傳歧異度與族群數大小的結果分析可以發現分佈於較高海拔之族群數較小,其歧異度低,脆弱度增加。推測台灣高山杜鵑遺傳歧異度與分布之海拔高度有關,亦即台灣高山杜鵑的脆弱度與氣溫有相關。
在合歡山東峯步道的研究樣區可以發現大片玉山杜鵑叢生,且植被下植物種類少,可謂當地之優勢物種。因此本研究欲探討玉山杜鵑之相生相剋作用,結果顯示濃度1 % ~ 5 %之玉山杜鵑葉片水萃取液對萵苣、小白菜、大花咸豐草及莧菜之種子發芽及幼根生長有抑制作用。此外,植物殘體在分解過程中也會釋出相剋物質以抑制鄰近植物的生長,因此本研究欲探討玉山杜鵑葉片在經由水的分解過程中,會釋放出何種相剋物質,以及在水的分解過程中其相生相剋能力是否會受到分解時間長短的影響。將玉山杜鵑葉片50 g浸泡在950 ml蒸餾水中於室溫下讓其分別分解1、2、4及8週並得其水萃取液,以上述植物種子做生物分析,結果顯示玉山杜鵑葉片之水萃取液不論是否有經過分解處理,對試驗種子發芽之幼根根長生長皆有抑制效果;觀察其毒性動態變化可以發現在第一次及第二次萃取之水萃取液抑制效果最大,第三次萃取之後抑制效果漸漸減低。對其水萃取液進行紙色層分析,發現含有酚酸類物質,如o-hydroxyphenylacetic、vanillic acid、p-coumaric acid、syringic acid、p-hydroxybenzoic acid、3,4,5-trimethoxybenzoic acid、veratric acid、gentisic acid、protocatechuic acid、ferulic acid、o-coumaric acid、caffeic acid。玉山杜鵑在東峯可以視為優勢植物,除了已適應當地氣候、地理環境之外,其葉部含有植物相剋物質可以抑制其他植物物種的生長,導致杜鵑林下之植被物種減少。
Rhododendron rubropilosum Hayata var. taiwanalpinum, one of the endemic Rhododendron species, distributes in high mountain area of Taiwan. According to the literature review, little information on genetic structure and its relationship with climate changes was reported. In this study, the genetic structure of R. rubropilosum taiwanalpinum in relation to climate changes was examined based on microsatellite loci. The result indicated that the isolated eight microsatellite loci were significantly deviated from Hardy–Weinberg expectations due to the heterozygote deficiency which showed the loss of genetic polymorphisms. The FST of R. rubropilosum taiwanalpinum was 0.0532 on average, showing lower differentiation. The analysis of the relationship between genetic diversity and population size revealed that the vulnerability of population was correlated to the population size and low diversity in the higher altitude of this area. The findings suggested that the genetic diversity of R. rubropilosum taiwanalpinum was positively correlated to population size as affected by temperature, and also correlated to the altitude of its distribution.
Rhododendron pseudochrysanthum Hayata, a dominant vegetation, is almost lacking of understory species along the trail of East Peak of Mt. Hohuan. Based on our observation, we thus hypothesized that the unique phenomenon might be due to the allelopathy. To test the hypothesis, bioassays of the 1% to 5% aqueous extracts of leaves of R. pseudochrysanthum showed significant inhibition on radicle growth of Brassica chinensis, Lactuca sativa, Amaranthus gangeticus and Bidens pilosa. Because plant residues of the Rhododendron may release allelopathic compounds to suppress the growth of understory species during the decomposing plant residues in soil, we thus conducted a serious of experiment by using 50 g leaves soaked in 950 ml distilled water and allowed the leaves to be decomposed in different time intervals, 1, 2, 4, 8 weeks. The aqueous extracts were obtained at the elapsed intervals of decomposition, and were bioassayed. The bioassay results of the aqueous extracts showed significant inhibition on radicle growth of B. chinensis, L. sativa, A. gangeticus and B. pilosa. We also found the most inhibition was shown in the first and second aqueous extracts, but the phytotoxicity decreased in the subsequent extracts. Furthermore, phytotoxic phenolic acids, such as o-hydroxyphenylacetic, vanillic acid, p-coumaric acid, syringic acid, p-hydroxybenzoic acid, 3,4,5-trimethoxybenzoic acid, veratric acid, gentisic acid, protocatechuic acid, ferulic acid, o-coumaric acid and caffeic acid were tentatively identified as compared with authentic compounds by means of paper chromatography. The amount of these compounds was decreasing with time interval of decomposition, indicating that the phytotoxicity decrease was correlated to the amount of phytotoxic phenolics present in the extracts. Regardless of the adaptation of Rhododendron plants to the climate and environment, the existence of allelochemicals might be responsible for the exclusion of plant species underneath Rhododendron stands, resulting in the low plant diversity of understory species.
致謝 i
摘要 ii
Abstract iii
表目錄 vii
圖目錄 viii
壹、前言 1
一、前人研究 1
二、杜鵑花植物之簡介 5
三、分子標誌微衛星基因座在族群遺傳分析上的應用 7
四、植物間相生相剋作用(Allelopathy) 8
五、研究目的 11
貳、材料與方法 12
一、 台灣高山杜鵑族群遺傳分析 12
(一)、研究地之概述 12
(二)、材料 13
(三)、實驗方法 13
(四)、資料分析 19
二、玉山杜鵑葉片水萃取液之種子生物活性分析(bioassay) 22
(一)、研究地之概述 22
(二)、材料 22
(三)、實驗方法 22
参、結果 25
一、台灣高山杜鵑族群遺傳分析 25
(一)、遺傳結構分析 25
(二)、族群遺傳變異 28
(三)、不同海拔高度分佈族群之遺傳歧異度與脆弱度分析 31
二、玉山杜鵑葉片萃取液之生物活性分析 33
(一)、玉山杜鵑葉片水溶萃取液對種子發芽幼根生長之生物分析 33
(二)、玉山杜鵑葉片分解試驗 34
肆、討論 55
一、台灣高山杜鵑族群遺傳分析 55
(一) 遺傳結構分析 55
(二) 族群遺傳變異 55
(三) 不同海拔高度分佈族群之遺傳歧異度與脆弱度分析 56
二、玉山杜鵑相生相剋作用 58
伍、結論 62
一、台灣高山杜鵑族群遺傳分析 62
二、玉山杜鵑相生相剋作用 62
陸、引用文獻 63


表目錄

表 1、台灣高山杜鵑樣本族群及採集地點 13
表 2、從台灣高山杜鵑葉中分離之微衛星基因座 26
表 3、8組台灣高山杜鵑微衛星基因座之基因型數 (Allels)、異型合子觀測值 (HO)、及異型合子期望值 (HE) 27
表 4、台灣高山杜鵑3組族群偏離哈溫平衡之機率值 28
表 5、台灣高山杜鵑8組微衛星基因座偏離哈溫平衡之機率值 29
表 6、8組微衛星基因座之分化指數(FIS、FIT、FST)及基因交流量(Nm) 29
表 7、台灣高山杜鵑三個族群之族群分化指數及基因交流量 30
表 8、台灣高山杜鵑三個族群之採集樣本數、脆弱度、族群大小、海拔高度、及年均溫 31
表 9、玉山杜鵑水萃取液中酚酸物質經紙色層分析法展佈後之呈色及Rf值 44
表 10、以紙色層分析法( paper chromatography )分析未經過分解與經過1、2、4及8週分解處理的第一次萃取液中暫鑑定之相剋物質的變化 46
表 11、以紙色層分析法( paper chromatography )分析未經過分解與經過1週分解處理的第1次、第2次、第3次及第4次萃取液中暫鑑定之相剋物質的變化 48
表 12、以紙色層分析法( paper chromatography )分析未經過分解與經過2週分解處理的第1次、第2次、第3次及第4次萃取液中暫鑑定之相剋物質的變化 50
表 13、以紙色層分析法( paper chromatography )分析未經過分解與經過4週分解處理的第1次、第2次、第3次及第4次萃取液中暫鑑定之相剋物質的變化 52
表 14、以紙色層分析法( paper chromatography )分析未經過分解與經過8週分解處理的第1次及第2次萃取液中暫鑑定之相剋物質的變化 54


圖目錄

圖 1、台灣高山杜鵑在台灣合歡山地區採樣點(圖來自軟體Google Earth) 12
圖 2、台灣高山杜鵑三個族群之脆弱度與族群大小之關係圖 32
圖 3、玉山杜鵑葉片水萃取液對大花咸豐草、苜蓿、萵苣、小白菜種子發芽之根長生長影響 33
圖 4、玉山杜鵑未分解之水取萃液與經過1、2、4及8週分解之第一次萃取水取萃液之種子生物分析 35
圖 5、玉山杜鵑未分解之水萃取液與每隔1週分解之連續水萃取液之種子生物活性試驗 37
圖 6、玉山杜鵑未分解之水萃取液與每隔2週分解之連續水萃取液之種子生物分析試驗 39
圖 7、玉山杜鵑未分解之水萃取液與每隔4週分解之連續水萃取液之種子生物分析 41
圖 8、玉山杜鵑未分解之水萃取液與每隔8週分解之連續水萃取液之種子生物分析 43
周昌弘,1984。 "臺灣熱帶農業生態系中之植物相剋作用。" 中央研究院植物研究所專刊 6: 29-41。
周昌弘,1990。植物生態學。臺北市。聯經。
金恆鑣、王瑞香、夏禹九,1998。生物多樣性公約的發展,生物多樣性前瞻研討會,pp. 4-13。中華民國87年12月,林耀松編。
馮國楣主編,1983。雲南杜鵑花。雲南人民出版社。
蔣鎮宇、王震哲、邱文良、許再文,2006,玉山國家公園植物微衛星DNA之分析及資料庫之建立,中華民國95年12月。
魏國彥、許晃雄,1997。全球環境變遷導論:Global change: an introduction. 教育部。
Avise, J. C., Arnold, J., Ball, Jr, R. M., Bermingham, E., Lamb, T., Neigel, E., Reeb, C. A., and Saunder, N. C. 1987. Intraspecific phylogeography: the mitochondrail DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst. 18: 489-522.
Barrett, R. D. H., and Schluter, D. 2008. Adaptation from standing genetic variation. Trends Ecol. Evol. 23(1): 38-44.
Byars, S. G., Papst, W., and Hoffmann, A. A. 2007. Local adaptation and cogradient selection in the alpine plant, Poa Hiemata, along a narrow altitudinal gradient. Evolution 61(12): 2925-2941.
Callaway, R. M., and Aschehoug, E. T. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic plant invasion. Science 290: 521-523.
Chou, C. H. 1999. Allelopathyin plant biodiversity and sustainable agriculture. Crit. Rev. Plant Sci. 18: 609-636.
Chou, C. H., and Kuo, Y. L. 1986. Allelopathic research of subtropical vegetation in Taiwan Ⅲ. Allelopathic exclusion of understory by Leucaena leucocephala (Lam.). J. Chem. Ecol. 12: 1431-1448.
Chou, C. H., and Leu, L. L. 1992. Allelopathic substances and interactions in Delonix regia Raf. J. Chem. Ecol. 18: 2285-2303.
Chou, C. H., and Lin, H. J. 1976. Autointoxication mechanism of Oryza sativa. I. Phytotoxic effects of decomporing rice recidues in paddy soil. J. Chem. Ecol. 2: 353-367.
Chou, C. H., and Patrick, Z. A. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol. 2: 369-387.
Chou, C. H., Waller, G. R., Cheng, C. S., Yang, C. F., and Kim, D. 1995. Allelochemical activity of naturally occurring compounds from mungbean (Vigna radiata L.) plants and their surrounding soil. Bot. Bull. Acad. Sin. 36: 9-18.
Chou, C. H., and Yang, C. M. 1982. Allelopathic research of subtropical vegetation in Taiwan Ⅱ. Comparative exclusion of understory by Phyllostachys edulis and Cryptomeria japonica. J. Chem. Ecol. 8: 1489-1507.
Chou, C. H., and Young, C. C. 1975. Phytotoxic substances in twelve subtropical grasses. J. Chem. Ecol. 1: 183-193.
Cipollini, D., Stevenson, R., Enright, S., Eyles, A., and Bonello, P. 2008. Phenolic Metabolites in Leaves of the Invasive Shrub, Lonicera maackii, and Their Potential Phytotoxic and Anti-Herbivore Effects. J. Chem. Ecol. 34: 144-152.
Collier, M. H., Vankat, J. L., and Hughes, M. R. 2002. Diminished plant richness and abundance below Lonicera maackii, an invasive shrub. Am. Mid. Nat. 147: 60-71.
Crozier, R. H. 1997. Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Ann. Rev. Ecol. Syst. 28: 243-268.
Donaldson, L. A. 2001. Lignification and lignin topochemistry-an ultrastructural view. Phytochemistry 57: 859-876.
Dorning, M., and Cipollini, D. 2006. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184: 287-296.
Doyle, J. J., and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
Eppard, H. R., Horton, J. L., Nilsen, E. T., Galusky, P., and Clinton, B. D. 2005. Investigating the allelopathic potential of Kalmia latifolia L. (Ericaceae). Southeast. Nat. 4(3): 383-392.
Esen, D., Nilsen, E. T., and Yildiz, O. 2006. Ecology, competitive advantages, and integrated control of rhododendron: an old ornamental yet emerging invasive weed around the globe, pp. 407-421, in Floriculture, Ornamental and Plant Biotechnology. Global Science Books.
Fialova, A., Cejkova, A., Masak, J., and Jirku, V. 2003. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation. Commun. Agric. Appl. Biol. Sci. 68(2A): 155-158.
Forest, F., and Grenyer, R. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445(7129): 757-760.
Frankham, R. 2005. Genetics and extinction. Biol. Conserv. 126(2): 131-140.
Hamrick, J. L., and Allard, R. W. 1972. Microgeographical variation in allozyme frequencies in Avena barbata. Proc. Nat. Acad. Sci. 69:2100-2104.
Heale, S. M., and Petes, T. D. 1995. The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system. Cell 83(4): 539-545.
Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world''s coral reefs. Mar. Freshwat. Res. 50: 839-866.
Hoffman, A. A., and Parsons, P. A. 1997. Extreme Environmental Change and Evolution, Cambridge Univ. Press, Cambridge. 271 p.
Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15: 56-61.
Grabherr, G., Gottfried, M., and Paull, H. 1994. Climate effects on mountain plants. Nature 369(9): 448-448.
Inderjit, and Duke, S. O. 2003. Ecophysiological aspects of allelopathy. Planta 217: 529-539.
Jump, A. S., and Peñuelas, J. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8(9): 1010-1020.
Jump, A. S., and Peñuelas, J. 2006. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc. Natl. Acad. Sci. 103(21): 8096-100.
Jump, A. S., and Marchant, R. 2009. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14(1): 51-58.
Lee, T. H., and Chou, C. H. 2000. Three new flavonol galloylglycoside from leaves of Acacia confuse. J. Nat. Prod. 63: 710-712.
Lian, C., Zhou, Z., and Hogetsu, T. 2001. A simple method for developing microsatellite markers using amplified fragments of inter-simple sequence repeat (ISSR). J. Plant Res. 114: 381-385.
Mace, G. M., Gittleman, J. L., and Purvis, A. 2003. Preserving the Tree of Life. Science 300: 1707-1709.
Mallik, A. U. 1995. Conversion of temperate forests into heaths-role of ecosystem disturbance and ericaceous plants. Environ. Manage. 19: 675-684.
McCarty, J. P. 2001. Ecological consequences of recent climate change. Conserv. Biol. 15(2): 320-331.
Messier, C. 1993. Factors limiting early growth of western redcedar, western hemlock and sitka spruce seedlings on ericaceous-dominated clearcut sites in coastal British Columbia. For. Ecol. Manage. 60: 181-206.
Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club 93: 332-356.
Muller, W. H. 1971. Effect of allelopathic substances on seedling development, pp.73-74, in Biochemical Interactions Among Plants. National Academy of Sciences, Washington, D. C.
Nilsen, E.T., Walker, J. F., Miller, O. k., Semones, S. W., Lei, T. T., and Clinton, B. D. 1999. Inhibition of seedling survival under Rhododendron maximum (Ericaceae): could allelopathy be a cause? Am. J. Bot. 86(11): 1597-1605.
Nilsson, M. C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98: 1-7.
Oostermeijer, J. G. B., and Luijten, S. H. 2003. Integrating demographic and genetic approaches in plant conservation. Biol. Conserv. 113(3): 389-398.
Pauli, H., Gottfried, M., and Grabherr, G. 2003. Effects of climate change on the alpine and nuval vegetation of the alps. J. Mt. Ecol. 7: 9-12.
Peters, R. L., and Darling, J. D. S. 1985. The greenhouse effect and nature reserves: global warming would diminish biological diversity by causing extinctions among reserve species. Bioscience 35: 707-717.
Prentis, P. J., and Wilson, J. R. U. 2008. Adaptive evolution in invasive species. Trends Plant Sci. 13(6): 288-294.
Rice, E. L. 1979. Allelopathy-an update. Bot. Rev. 45: 17-109.
Rice, E. L. 1984. Allelopathy, Academic Press, New York and London. 422 p.
Rice, E. L. 1995. Biological control of weeds and plant disease: advances in applied allelopathy. Univ. of Oklahoma Press. Norman. 439 p.
Ridenour, W. M., and Callaway, R. M. 2001. The relativeimportance of allelopathy in interference: the effects of aninvasive weed on a native bunchgrass. Oecologia 126: 444-450.
Schloetterer, C., and Tautz, D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20(2): 211-216.
Selkoe, K. A., and Toonen, R. J. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615-629.
Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati, D., and Klironomos, J. N. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4(5): 727-731.
Sutherest, R. W., Maywald, G. F., Bottomley, W., and Bourne, A. 2004. CLIMEX V2. Hearne Scienctific Software Pty Ltd, Melbourne (AU). 100 p.
Thorne, R. L. Z., Waller, G. R., Mopherson, J. K., Krenzer, E. G. Jr., and Young, C. C. 1990. Autotoxic effects of old and new wheat straw in conventional-tillage and non-tillage wheat soil. Bot. Bull. Acad. Sinica 31: 35-49.
Tseng, M. H., Kuo, H. S., Chen, Y. M., and Chou, C. H. 2003. Allelopathic potential of Macaranga tanarius. J. Chem. Ecol. 29(5): 1269-1286.
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., and Bairlein, F. 2002. Ecological responses to recent climate change. Nature 416: 389-395.
Walther, G. R. 2004. Plants in a warmer world. Perspect. Plant Ecol. Evol. Syst. 6(3): 169-185.
Wang, T. S. C., Yang, J., and Chuang, T. 1967. Soil phenolic acids as plant growth inhibitors. Soil Sci. 103: 239-246.
Weir, B. S., and Cockerham, C. C. 1984. Estimation F-statistics for the analysis of population structure. Evolution 38: 1358-1370.
Whitehead, D. C. 1974. Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature 202: 417-418.
Wilson, E. O. 1992. The Diversity of Life, Cambridge. Mass.: Harvard University Press. 432 p.
Woodward, F. I. 1987.Climate and Plant Distribution (Cambridge Univ. Press, Cambridge). 174 p.
Wright, S. 1931. Evolution in mendelian population. Genetics 16: 97-159.
Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420.
Wuethrich, B. 2000. How climate change alters rhythms of the wild. Sciences 287: 793-795.
Yang, C. M., Chang, I. F., Lin, S. J., and Chou, C. H. 2004. Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: Ⅱ. Stimulation of consumption-orientation. Bot. Bull. Acad. Sin. 45:119-125.
Young, C. C. 1984. Autointoxication in root exudates of Aspargus officinalis L. Plant Soil 82: 247-253.
Young, C. C. 1985. Autointoxication in residues of Asparagus officinalis L. Plant Soil 85: 385-393.
Young, C. C., and Bartholomew, D. P. 1981. Allelopathy in a grass-legume association: I. Effect of Hemarthria altissima (Poir.) Stapf. and Hubb. root residues on the growth of Desmodium intortum in a tropical soil. Crop Sci. 21: 770-774.
Zanardo, D. I. L., Lima, R. B., Ferrarese, M. de L. L., Bubna, G. A., and Ferrarese-filho, O. 2009. Soybean root growth inhibition and lignification induced by p-coumaric acid. Environ. Exp. Bot. 66: 25-30.
Zhu, H., and Mallik, A. U. 1994. Interactions between Kalmia and black spruce: isolation and identification of allelopathic compounds. J. Chem. Ecol. 20(2): 407-421.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔