|
[1]A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”, Mater. Sci. Eng. A, vol.304, 2001, pp.1-10. [2]A. Inoue, “High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates”, Mater. Trans. JIM, vol.36, no.7, 1995, pp.866-875. [3]A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., vol.48, 2000, pp.279-306. [4]A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Mater. Trans., JIM, vol.32, no.7, 1991, pp.609-616. [5]A. Inoue, and W. Zhang, “Formation and mechanical properties of Cu-Hf-Al bulk glassy alloys with a large supercooled liquid region of over 90 K”, J. Mater. Res., vol.18, 2003, pp.1435-1440. [6]A. Inoue, and W. Zhang, “Formation, Thermal Stability and Mechanical Properties of Cu-Zr-Al Bulk Glassy Alloys”, Mater. Trans., JIM, vol.43, no.11, 2002, pp.2921-2925. [7]A. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb (or Ta)0-10B20 amorphous alloys”, J. Appl. Phys. Vol.83, 1998, pp.1967-1972. [8]A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai, and T. Masumoto, “Effect of Cu or Ag on the Formation of Coexistent Nanoscale Al Particles in Al-Ni-M-Ce (M=Cu or Ag) Amorphous Alloys”, Mater. Trans., JIM, vol.35, no.2, 1994, pp.95-102. [9]A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, “New Amorphous Mg-Ce-Ni Alloys with High Strength and Good Ductility”, Jan. J. Appl. Phys., vol.27, 1988, pp.2248-2251. [10]A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans., JIM, vol.33, no.10, pp.937-945. [11]A. Inoue, T. Zhang, and T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region”, Mater. Trans., JIM, vol.30, no.12, 1989, pp.965-972. [12]A. Inoue, T. Zhang, and T. Masumoto, “Preparation of Bulky Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and Mechanical Properties”, Mater. Trans., JIM, vol.36, no.3, 1995, pp.391-398. [13]A. Inoue, T. Zhang, and T. Masumoto, “Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region”, Mater. Trans., JIM, vol.31, no.3, 1990, pp.177-183. [14]A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems”, Acta Mater., vol.49, 2001, pp.2645-2652. [15]C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, and R. A. Buchanan, “A 200 nm thick glass-forming metallic film for fatigue-property enhancements”, Appl. Phys. Lett., vol.88, 2006, p.131902. [16]C. W. Chu, Jason S. C. Jang, G. J. Chen, and S. M. Chiu, “Characteristic studies on the Zr-based metallic glass thin film fabricated by magnetron sputtering process”, Surf. Coat. Tech., vol.202, 2008, pp.5564-5566. [17]H. S. Chen, and C. E. Miller, “A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids”, Rev. Sci. Instrum., vol.41, 1970, pp.1237-1238. [18]J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, and C. H. Kuo, “Annealing-induced full amorphization in a multicomponent metallic film”, Phys. Rev. B, vol.69, 2004, p.113410. [19]K. D. Young, “The Selective Value of Bacterial Shape”, Microbiol. Mol. Biol. Rev., vol.70, 2006, pp.660-703. [20]M. E. Davey, and G. A. O’toole, “Microbial Biofilms: from Ecology to Molecular Genetics”, Microbiol. Mol. Biol. Rev., vol.64, 2000, pp.847-867. [21]M. Naka, K. Hashimoto, and T. Masumoto, “Change in corrosion behavior of amorphous Fe---P---C alloys by alloying with various metallic elements”, J. Non-Cryst. Solids, vol.31, 1979, pp.355-365. [22]M. T. Cabeen, and C. Jacobs-Wagner, “Bacterial cell shape”, Nat. Rev. Microbiol., vol.3, 2005, pp.601-610. [23]R. M. Donlan, “Biofilms: Microbial Life on Surfaces”, Emerg. Infect. Dis., vol.8, no.9, 2002, pp.881-890. [24]R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure”, J. Vac. Sci. Technol., vol.2, 1984, pp.500-503. [25]S. L. Bardy, S. Ng, and K. F. Jarrell, “Prokaryotic motility structures”, Microbiology, vol.149, 2003, pp.295-304. [26]S. S. Branda, A. Vik, L. Friedman, and R. Kolter, “Biofilms: the matrix revisited”, Trends. Microbiol., vol.13, 2002, pp.20-26. [27]T. Zhang, and A. Inoue, “Preparation of Ti-Cu-Ni-Si-B Amorphous Alloys with a Large Supercooled Liquid Region”, Mater. Trans., JIM, vol.40, no.4 1999, pp.301-306. [28]W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses”, Mater. Sci. Eng. R, vol.44, 2004, pp.45-89. [29]W. Klement, R. H. Willens, and P. Duwez, “Thermophysical properties of bulk metallic glass-forming liquids”, Nature, vol.187, 1960, p.869. [30]W. L. Johnson, “Bulk Amorphous Metal: An Emerging Engineering Material”, JOM, vol.54, 2002, p.40. [31]W. L. Johnson, “Bulk glass-forming metallic alloys: science and technology”, MRS Bull., vol.24, 1999, pp.42-56. [32]W. L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Mater. Sci. Forum, vol.225, 1996, pp.35-50.
|