跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳憲緯
研究生(外文):Hsien-wei Chen
論文名稱:鋯-銅基非晶質薄膜製備與抗菌性質研究
論文名稱(外文):A Study on the Preparation and Antibacterial Property of Zr- and Cu-based Amorphous Thin Films
指導教授:鄭憲清陳國駒
指導教授(外文):Jason S. C. JangGuo-Ju Chen
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:非晶質薄膜抗菌
外文關鍵詞:antimicrobeamorphous thin film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:598
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非晶質金屬薄膜係經由直流磁控濺鍍所製備,並對其結晶構造、表面形貌和抗菌能力等進行分析。根據X-ray繞射圖譜和TEM選區繞射圖形的結果,分別可以觀察到寬廣的繞射鋒與繞射環,指出鋯-銅基薄膜具有典型的非晶質結構,證實經由直流磁控濺鍍所製備的鋯基與銅基多元金屬薄膜展現了相當良好的非晶質形成能力。在SEM影像中,非晶質薄膜呈現了平滑的表面型態。而更進一步地利用AFM檢測試片的表面粗糙度,可以發現在經過薄膜沉積製程後,SUS 304不鏽鋼的表面粗糙度由原本的約7 nm降低至1 nm左右。抗菌實驗係選用Candida albicans、Escherichia coli、Pseudomonas aeruginosa和Staphylococcus aureus等菌種,在76小時培養時間中,鋯-銅基非晶質薄膜對受測菌株的抗菌效果近皆優於SUS 304不鏽鋼,尤其是銅基非晶質薄膜所展現的長效性抗菌效果。由實驗結果推測影響抗菌性質的重要指標為表面粗糙度,因為越平坦的表面將使得細菌難以在上面附著與移動,進而抑制其繁殖速度,達到抗菌的效果。
This study aims to investigate the crystal structure, surface morphology and antimicrobial ability of the (Zr53Cu30Ni9Al8)99.5Si0.5 and (Cu42Zr42Al8Ag8)99.5Si0.5 amorphous alloy thin films prepared by DC sputtering. From the structural analysis by XRD and TEM, the (Zr53Cu30Ni9Al8)99.5Si0.5 and (Cu42Zr42Al8Ag8)99.5Si0.5 thin films exhibited an excellent glass forming ability. According to the SEM observation and the AFM analysis, the surface roughness of SUS 304 stainless steel significantly reduced form 7 nm to about 1 nm after the deposition of amorphous thin films. To evaluate the antimicrobial capability of the (Zr53Cu30Ni9Al8)99.5Si0.5 and (Cu42Zr42Al8Ag8)99.5Si0.5 amorphous alloy thin films, the organisms such as Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were chosen. During the incubation test of the microbes, the digital photography record to the growth images at each period of setting time and then assessed the areas of growth by the software of Image-Pro Plus. According to the images analysis, the amorphous alloy thin films possess a much better antimicrobial effect than that of SUS 304 stainless steel substrates. In particular, the (Cu42Zr42Al8Ag8)99.5Si0.5 amorphous alloy thin films exhibit a long-term antimicrobial capability. In summary, the surface roughness of the amorphous thin films acts as an important factor to affect the antimicrobial capability. The microbes are difficult to attach and move on an ultra-smooth surface. Then, the biological activities of the microbes are effectively suppressed. This study offers new findings for the BMGs in the medical applications.
中文摘要I
英文摘要II
誌謝III
總目錄IV
表目錄VII
圖目錄VIII
第一章 前言1
第二章 理論背景2
2-1 塊狀非晶質合金2
2-1-1 發展2
2-1-2 組成要素3
2-2 非晶質合金特性4
2-2-1 機械性質4
2-2-2 耐腐蝕性4
2-2-3 磁性質5
2-2-4 其它性質5
2-3 抗菌理論5
2-3-1 細菌5
2-3-3 測試菌種6
2-3-3 抗菌理論8
第三章 實驗方法12
3-1 材料製備12
3-1-1 靶材製作12
3-1-2 基板製備13
3-1-3 直流磁控濺鍍13
3-2 材料性質分析14
3-2-1 薄膜厚度量測:膜厚量測儀14
3-2-2 結晶構造分析:X-ray繞射儀14
3-2-3 表面型態觀察與成份分析:場發射掃描式電子顯微鏡14
3-2-4 表面粗糙度量測:原子力顯微鏡14
3-2-5 微結構觀察:穿透式電子顯微鏡15
3-3 抗菌性質分析15
第四章 實驗結果21
4-1 薄膜厚度觀察21
4-2 結晶構造分析21
4-3 表面形貌觀察與成份分析21
4-4 表面粗糙度分析22
4-5 顯微結構觀察22
4-7 抗菌性質結果23
第五章 討論37
5-1 非晶質合金薄膜37
5-1-1 DC直流磁控濺鍍37
5-1-2 組合式非晶質合金靶材38
5-1-3 非晶質薄膜結構與表面形貌39
5-2 抗菌性質41
5-3 抗菌模型42
5-3-1 表面粗糙度的影響43
5-3-2 金屬離子的影響44
第七章 參考文獻60
作者簡介64
表2-1 非晶質合金之特性10
表2-2 真核細胞與原核細胞的特徵差異11
圖3-1 實驗流程圖16
圖3-2 (a) Lincoln electric INVERTEC V450-PRO氬銲機, (b) 電弧融煉爐, (c) 真空吸鑄爐熔煉爐, (d) 非晶質合金板材17
圖3-3 組合式靶材外觀18
圖3-4 PANalytical X PERT PRO多功能X光繞射儀18
圖3-5 場發射掃描式電子顯微鏡Hitachi S-4700 19
圖3-6 原子力顯微鏡為NT-MDT P47 19
圖3-7 穿透式電子顯微鏡型號FEI Tecnai G2 S-TWIN 20
圖4-1 改變濺鍍功率成長非晶質薄膜之膜厚變化24
圖4-2 改變濺鍍功率成長(Zr53Cu30Ni9Al8)99.5Si0.5薄膜的XRD繞射圖形25
圖4-3 改變濺鍍功率成長(Cu42Zr42Al8Ag8)99.5Si0.5薄膜的XRD繞射圖形25
圖4-4 在SUS 304不�袗�上沉積(Zr53Cu30Ni9Al8)99.5Si0.5非晶質薄膜的SEM影像:(a)15 W, (b)20 W, (c)25 W, 和(d)30 W 26
圖4-5 在SUS 304不�袗�上沉積(Cu42Zr42Al8Ag8)99.5Si0.5非晶質薄膜的SEM影像:(a)15 W, (b)20 W, (c)25 W, 和(d)30 W 27
圖4-6 改變濺鍍功率成長(Zr53Cu30Ni9Al8)99.5Si0.5非晶質薄膜之成份分析28
圖4-7 改變濺鍍功率成長(Cu42Zr42Al8Ag8)99.5Si0.5非晶質薄膜之成份分析28
圖4-8 改變濺鍍功率成長(Zr53Cu30Ni9Al8)99.5Si0.5薄膜之表面粗糙度分析29
圖4-9 改變濺鍍功率成長(Cu42Zr42Al8Ag8)99.5Si0.5薄膜之表面粗糙度分析29
圖4-10 (Zr53Cu30Ni9Al8)99.5Si0.5薄膜之橫截面微結構與標示處之選區繞射影像30
圖4-11 (Cu42Zr42Al8Ag8)99.5Si0.5薄膜之橫截面微結構與標示處之選區繞射影像30
圖4-12 直接於Mueller-Hinton瓊脂中培養各菌種之生長面積曲線31
圖4-13 未鍍膜之不�袗�基板對於各菌種之生長面積曲線圖31
圖4-14 未鍍膜之矽基板對於各受測菌種之生長面積曲線圖32
圖4-15 沉積(Zr53Cu30Ni9Al8)99.5Si0.5薄膜之矽基板對於各菌種之生長曲線圖32
圖4-16 (Zr53Cu30Ni9Al8)99.5Si0.5薄膜沉積功率15 W之菌種生長曲線圖33
圖4-17 (Zr53Cu30Ni9Al8)99.5Si0.5薄膜沉積功率20 W之菌種生長曲線圖33
圖4-18 (Zr53Cu30Ni9Al8)99.5Si0.5薄膜沉積功率25 W之菌種生長曲線圖34
圖4-19 (Zr53Cu30Ni9Al8)99.5Si0.5薄膜沉積功率30 W之菌種生長曲線圖34
圖4-20 (Cu42Zr42Al8Ag8)99.5Si0.5薄膜沉積功率15 W之菌種生長曲線圖35
圖4-21 (Cu42Zr42Al8Ag8)99.5Si0.5薄膜沉積功率20 W之菌種生長曲線圖35
圖4-22 (Cu42Zr42Al8Ag8)99.5Si0.5薄膜沉積功率25 W之菌種生長曲線圖36
圖4-23 (Cu42Zr42Al8Ag8)99.5Si0.5薄膜沉積功率30 W之菌種生長曲線圖36
圖5-1 常用之複合靶材結構設計48
圖5-2 HR-TEM影像:(a) (Zr53Cu30Ni9Al8)99.5Si0.5, (b) (Cu42Zr42Al8Ag8)99.5Si0.5 48
圖5-3 沉積非晶質合金薄膜於不�袗�之AFM影像分析49
圖5-4 (Cu42Zr42Al8Ag8)99.5Si0.5薄膜之SEM影像49
圖5-5 濺鍍薄膜之區域結構模型49
圖5-6 非晶質薄膜之柱狀結構模型50
圖5-7 非晶質薄膜之柱狀結構影像:(a)SEM, and (b)TEM 50
圖5-8 不同試片之Candida albicans繁殖面積曲線51
圖5-9 不同試片之Candida albicans單位時間成長曲線51
圖5-10 不同試片之Escherichia coli繁殖面積曲線52
圖5-11 不同試片之Escherichia coli單位時間成長曲線52
圖5-12 不同試片之Pseudomonas aeruginosa繁殖面積曲線53
圖5-13 不同試片之Pseudomonas aeruginosa單位時間成長曲線53
圖5-14 不同試片之Staphylococcus aureus繁殖面積曲線54
圖5-15 不同試片之Staphylococcus aureus單位時間成長曲線54
圖5-16 不同粗糙度試片之Candida albicans繁殖面積曲線55
圖5-16 不同粗糙度試片之Staphylococcus aureus繁殖面積曲線55
圖5-17 生物薄膜行程的主要階段示意圖56
圖5-18 (Cu42Zr42Al8Ag8)99.5Si0.5非晶質金屬薄膜:(a) 經過76小時培養之試片,鍍膜條件為25 W;與鍍膜條件為(b) 20 W, (c) 25 W, 和(d) 30 W之SEM影像56
圖5-19 表面電荷對細菌之影響示意圖57
圖5-20 不同試片之Escherichia coli單位時間成長曲線57
圖5-21 利用鍍膜條件20 W之(Cu42Zr42Al8Ag8)99.5Si0.5試片培養Candida albicans之生長影像:(a) 對照組,培養28小時,(b) 覆蓋試片,並培養28小時,(c) 試片移除之區域培養24小時,(d) 移除之試片,並繼續培養24小時,(e) 試片移除之區域培養48小時,(f) 移除之試片,並繼續培養48小時58
[1]A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”, Mater. Sci. Eng. A, vol.304, 2001, pp.1-10.
[2]A. Inoue, “High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates”, Mater. Trans. JIM, vol.36, no.7, 1995, pp.866-875.
[3]A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., vol.48, 2000, pp.279-306.
[4]A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Mater. Trans., JIM, vol.32, no.7, 1991, pp.609-616.
[5]A. Inoue, and W. Zhang, “Formation and mechanical properties of Cu-Hf-Al bulk glassy alloys with a large supercooled liquid region of over 90 K”, J. Mater. Res., vol.18, 2003, pp.1435-1440.
[6]A. Inoue, and W. Zhang, “Formation, Thermal Stability and Mechanical Properties of Cu-Zr-Al Bulk Glassy Alloys”, Mater. Trans., JIM, vol.43, no.11, 2002, pp.2921-2925.
[7]A. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb (or Ta)0-10B20 amorphous alloys”, J. Appl. Phys. Vol.83, 1998, pp.1967-1972.
[8]A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai, and T. Masumoto, “Effect of Cu or Ag on the Formation of Coexistent Nanoscale Al Particles in Al-Ni-M-Ce (M=Cu or Ag) Amorphous Alloys”, Mater. Trans., JIM, vol.35, no.2, 1994, pp.95-102.
[9]A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, “New Amorphous Mg-Ce-Ni Alloys with High Strength and Good Ductility”, Jan. J. Appl. Phys., vol.27, 1988, pp.2248-2251.
[10]A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans., JIM, vol.33, no.10, pp.937-945.
[11]A. Inoue, T. Zhang, and T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region”, Mater. Trans., JIM, vol.30, no.12, 1989, pp.965-972.
[12]A. Inoue, T. Zhang, and T. Masumoto, “Preparation of Bulky Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and Mechanical Properties”, Mater. Trans., JIM, vol.36, no.3, 1995, pp.391-398.
[13]A. Inoue, T. Zhang, and T. Masumoto, “Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region”, Mater. Trans., JIM, vol.31, no.3, 1990, pp.177-183.
[14]A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems”, Acta Mater., vol.49, 2001, pp.2645-2652.
[15]C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, and R. A. Buchanan, “A 200 nm thick glass-forming metallic film for fatigue-property enhancements”, Appl. Phys. Lett., vol.88, 2006, p.131902.
[16]C. W. Chu, Jason S. C. Jang, G. J. Chen, and S. M. Chiu, “Characteristic studies on the Zr-based metallic glass thin film fabricated by magnetron sputtering process”, Surf. Coat. Tech., vol.202, 2008, pp.5564-5566.
[17]H. S. Chen, and C. E. Miller, “A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids”, Rev. Sci. Instrum., vol.41, 1970, pp.1237-1238.
[18]J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, and C. H. Kuo, “Annealing-induced full amorphization in a multicomponent metallic film”, Phys. Rev. B, vol.69, 2004, p.113410.
[19]K. D. Young, “The Selective Value of Bacterial Shape”, Microbiol. Mol. Biol. Rev., vol.70, 2006, pp.660-703.
[20]M. E. Davey, and G. A. O’toole, “Microbial Biofilms: from Ecology to Molecular Genetics”, Microbiol. Mol. Biol. Rev., vol.64, 2000, pp.847-867.
[21]M. Naka, K. Hashimoto, and T. Masumoto, “Change in corrosion behavior of amorphous Fe---P---C alloys by alloying with various metallic elements”, J. Non-Cryst. Solids, vol.31, 1979, pp.355-365.
[22]M. T. Cabeen, and C. Jacobs-Wagner, “Bacterial cell shape”, Nat. Rev. Microbiol., vol.3, 2005, pp.601-610.
[23]R. M. Donlan, “Biofilms: Microbial Life on Surfaces”, Emerg. Infect. Dis., vol.8, no.9, 2002, pp.881-890.
[24]R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure”, J. Vac. Sci. Technol., vol.2, 1984, pp.500-503.
[25]S. L. Bardy, S. Ng, and K. F. Jarrell, “Prokaryotic motility structures”, Microbiology, vol.149, 2003, pp.295-304.
[26]S. S. Branda, A. Vik, L. Friedman, and R. Kolter, “Biofilms: the matrix revisited”, Trends. Microbiol., vol.13, 2002, pp.20-26.
[27]T. Zhang, and A. Inoue, “Preparation of Ti-Cu-Ni-Si-B Amorphous Alloys with a Large Supercooled Liquid Region”, Mater. Trans., JIM, vol.40, no.4 1999, pp.301-306.
[28]W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses”, Mater. Sci. Eng. R, vol.44, 2004, pp.45-89.
[29]W. Klement, R. H. Willens, and P. Duwez, “Thermophysical properties of bulk metallic glass-forming liquids”, Nature, vol.187, 1960, p.869.
[30]W. L. Johnson, “Bulk Amorphous Metal: An Emerging Engineering Material”, JOM, vol.54, 2002, p.40.
[31]W. L. Johnson, “Bulk glass-forming metallic alloys: science and technology”, MRS Bull., vol.24, 1999, pp.42-56.
[32]W. L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Mater. Sci. Forum, vol.225, 1996, pp.35-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top