( 您好!臺灣時間:2024/05/25 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):The Applications of Photonic Crystal Fiber
指導教授(外文):Vincent K. S. Hsiao
外文關鍵詞:photonic crystal fiberfiber sensor
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光子晶體光纖是由週期排列的空氣孔洞所構成的圓柱波導光纖,其週期排列的空氣孔洞結構可以藉由填充不同的物質,使得光纖內的光傳導特性改變,造成輸出光源的變化;而光在光子晶體光纖結構內傳輸,可以藉由全反射現象 (Total internal reflection) 和光子能隙 (Photonic bandgap) 這兩種方式進行光傳導。
Photonic crystal fiber (PCF) is a microstructure waveguide that contains an array of air holes running down the length of fiber. The periodic structure of air holes provides PCF an additional design freedom offering different light propagation properties. The guiding mode of PCF depends on either a total internal refraction (TIR) or photonic band-gap (PBG) effect determined by the fiber structure. In this thesis, we have achieved several photonic applications by infiltrating different materials into a solid-core PCF. At first, an all-optical tuning device was fabricated by filling the photoresponsive liquid crystal into the voids within the cladding structure, that creating an environment of modifiable refractive index. Besides, we have demonstrated a PCF-assisted fluorescence spectrometer by using Rhodamine 6G (R6G) infiltrated in to the air holes. Those demonstrations could possibly be applied in fluorescence-based DNA biological sensors.
第一章 敘論
1.2 研究動機與目的
1.3 論文架構概述
第二章 光子晶體光纖與去氧核醣核酸之基本原理簡介
2.1 光纖種類與結構
2.1.1 光纖分類
2.1.2 全反射 (total internal reflection,TIR)
2.1.3 數值孔徑 (numerical aperture,N.A.)
2.1.4 漸逝波 (evanescent wave,EW)
2.2 光子晶體 (photonic crystals)
2.2.1 光子晶體結構
2.2.2 光子晶體光纖 (photonic crystal fibers,PCFs)
2.3 去氧核醣核酸 (deoxyribonucleic acid,DNA)螢光標定
2.3.1 去氧核醣核酸(deoxyribonucleic acid,DNA)基本理論與架構
2.3.3 生物分子固定技術
2.3.4 螢光 (fluorescence)基本理論
第三章 實驗設備與研究方法
3.1 實驗材料與儀器
3.2 實驗流程架構
3.3 光纖前處理
3.4 光學量測系統架設方法
3.4.1 填充液晶分子於光子晶體光纖
3.4.2 填充氯化鈣 (Calcium Chloride,CaCl2)於光子晶體光纖
3.4.3 填充螢光染劑Rhodamine 6G (R6G)於光子晶體光纖
3.5 去氧核醣核酸雜合反應 (hybridization)於玻璃改質基板
3.5.1 玻璃片的前處理與表面修飾
3.5.2 去氧核醣核酸DNA primer
3.5.3 去氧核醣核酸雜合反應實驗流程
第四章 實驗結果與討論
4.2 全光調控式液晶
4.3 光子晶體光纖孔洞摻入氯化鈣 (CaCl2)
4.4 光子晶體光纖孔洞填入螢光染劑Rhodamine 6G (R6G)
4.5 去氧核醣核酸(DNA)雜合反應於APTES表面改質玻璃
第五章 結論與未來展望
第六章 參考資料
1.楊德明、高甫仁. (2007). 生醫光電簡介. Available: http://psroc.phys.ntu.edu.tw
/bimonth/download.php?d=1&cpid=160&did=2. Last accessed 27 August 2009.
2.E. Southern, “DNA blotting, and microarray technology: A case study of the shifting role of patents in academic molecular biology” Genomics, Society and Policy, 2(2), 50-61 (2006).
3.W. Bains, “Simple DNA probe assays based on particle agglutination” Clin. Chem., 44(4), 876-878 (1998).
?id=251&textfield0= 奈米創新網
5.N. Verma and M. Singh, “Biosensors for heavy metals” BioMetals, 18(2), 121-129 (2005).
6.A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA)” Curr. Opin. Struc. Biol., 5(5), 699-705 (1995).
7.R. W. Nelson and J. R. Krone, “Surface plasmon resonance biomolecular interaction analysis mass spectrometry.2. Fiber optic-based analysis” Anal. Chem., 69(21), 4369-4374 (1997).
8.H. M. Haake, A. Schütz and G. Gauglitz, “Label-free detection of biomolecular interaction by optical sensors” Fresenius J. Anal. Chem., 366(6), 576-585 (2000).
9.B. Johnsson, S. Löfås and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors” Anal. Biochem., 198(2), 268-277 (1991).
10.R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance”, Sens. Actuators B Chem., 12(3), 213-220 (1993).
11.A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles” J. Am. Chem. Soc., 125(34), 10596-10204 (2002).
12.C. E. Jordan, A. G. Frutos, A. J. Thiel and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces” Anal. Chem., 69(24), 4939-4947 (1997).
13.D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology” Traffic, 2(11), 764-774 (2001).
14.C. A. Furman, R. Chen, B. Guptaroy, M. Zhang, R. W. Holz and M. Gnegy, “ Dopamine and amphetamine rapidly increase dopamine transporter trafficking to the surface: Live-cell imaging using total internal reflection fluorescence microscopy” J. Neurosci., 29(10), 3328-3336 (2009).
15.J. S. Burmeister, L. A. Olivier, W. M. Reichert and G. A. Truskey, “Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials ” Biomaterials, 19(4), 307-325 (1998).
16.E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy” Science, 262, 1422-1425(1993).
17.F. de Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst and C. G. Figdor, “Cell biology beyond the diffraction limit: near-field scanning optical microscopy” J. Cell Sci., 114(23), 4153-4160 (2001)
18.陳婉如. (2002). 光電在生物晶片檢測上的應用. Available: http://www.pida. org.tw/optolink/optolink_pdf/91114209.pdf. Last accessed 27 August 2009.
21.E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58(20), 2059 (1987).
22.S. John, “Strong localization of photons in certain disordered dielectric superlattices” Phys. Rev. Lett., 58(23), 2486 (1987).
23.L. P. Biro, Zs. Ba´lint, K. Kerte´sz, Z. Ve´rtesy, G. I. Ma´rk, Z. E. Horva´th, J. Bala´zs, D. Me´hn, I. Kiricsi,V. Lousse, and J. P. Vigneron, “Role of photonic-crystal-type structures in the thermal regulationof a Lycaenid butterfly sister species pair” Phys. Rev., 67(2), 021917 (2003).
24.J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding” Opt. Lett., 21(19), 1547-1549 (1996).
28.高宇, 分子生物學(一版), 鼎茂圖書, 2006.
29.D. R. Baselt, G. U. Lee, K. M. Hansen, L. A. Cherisey and R. J. Colton, “A hith-sensitivity micromachined biosensor” Proc. IEEE, 85(4), 672-680 (1997).
33.陳彥豪, 光纖漸逝波免疫感測器的開發及其應用於葡萄球菌腸毒素A之偵測, 國立台灣大學農化所碩士論文, 1995.
34.B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, “Biomaterials science: an introduction to materials in medicine” LA: Elesvier Health. 124-130. (1996)
35.J.R. Lakowicz, “Principles of Fluorescence Spectroscopy. 3rd ed.” New york: Plenum press, 1-60, (1983).
37.M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers” Opt. Express, 12(8), 1775-1779 (2004).
38.V. K. S. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber” Opt. Express, 16(17), 12670-12676 (2008).
39.V. K. S. Hsiao, R. W. John, Y. Zheng, F. L. Pamela, J. B. Timothy and Tony J. Huang, “Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing” J. Mater. Chem., 17, 4896-4901 (2007).
第一頁 上一頁 下一頁 最後一頁 top